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Three-dimensional (3D) bioprinting is a revolutionary technique in biomedical 

engineering, enabling the fabrication of tissue and organ-like structures using bio-inks. 

This review focuses on the classification of bio-inks and the major bioprinting 

techniques used in tissue engineering. Bio-inks, the essential component of bioprinting, 

are categorized into natural and synthetic types. Natural bio-inks such as collagen, 

gelatin, alginate, and agarose offer excellent biocompatibility, while synthetic polymers 

like polyethylene glycol (PEG) and polyvinyl pyrrolidone (PVP) provide greater 

mechanical strength and tunability. Critical properties of bio-inks—printability, 

biocompatibility, and viscosity—are discussed with respect to their influence on the 

fidelity and stability of printed structures. Furthermore, this review elaborates on three 

major bioprinting methods: extrusion-based, inkjet-based, and laser-assisted 

bioprinting. Each technique is analyzed based on its working principles, resolution, cell 

viability, and applications. Extrusion-based printing is favored for high-viscosity inks 

and cell density, inkjet-based printing for cost-effectiveness and precision, and laser-

assisted printing for its non-contact, high-resolution output. This review concludes that 

the selection of appropriate bio-ink and printing technology is crucial for the successful 

development of engineered tissues, which holds significant potential in regenerative 

medicine and pharmaceutical research. 
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INTRODUCTION 

The Three-dimensional (3D) printing is also 

known as additive manufacturing or rapid 

prototyping [1]. Additive manufacturing is one of 

the 3D scaffold  fabrication method. It is a process 

of fabricating 3D solid objects from a digital file. 

The fabrication of 3D printed object is achieved 

using additive process. An object is created 

layering or built down successive layer by layer of 

material until the entire object is created. Each of 

these layer can be seen as a thinly sliced horizontal 

cross-section [2]. The main objective of 

tissues/organ engineering is to reconstruction of 

https://www.ijpsjournal.com/
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the damaged or diseased tissue or organ with cells 

and bio active molecule [3]. In addition 3D bio 

printing taking image of the damaged or targeted 

tissue/organ obtained by computed tomography 

(CT) or magnetic resonance imaging (MRI) scan 
[4]. Three dimensional (3D) printing was first 

described by Charles W. Hull in 1986, He named 

his method ‘Stereolithography’. Thin layer of 

material that can be cured with ultra-violet (UV) 

light were sequentially printed in layer to form a 

solid 3D structure [5]. Later application of this 

process made it possible to create a sacrificial resin 

molds for fabrication of 3D scaffolds using 

biological material [6]. bio-ink is the main 

component used in the 3D printing. these bio ink 

varies with the printing. And the selection of bio 

ink is based on their properties like compatibility, 

printability, viscosity etc., [7]. There are several 

techniques for 3D bioprinting. They are Laser-

assisted printing, Inkjet, extrusion, and 

stereolithography. Among this extrusion-based 

bio-printing is the most common method for the 

bio printing technique [8]. In this review we discuss 

about the classification of bio-ink and also 

extrusion-based, inkjet-based and laser-assisted 

method 3D bioprinting. First we consider the bio-

ink classification. Then next, extrusion-based, 

inkjet-based and laser-assisted method. 

2.BIO-INK 

Bio-ink is one of the most important requirement 

for 3D printing, It is composed of cells with 

biomaterials like hydrogel or cell aggregates and it 

plays a crucial role to fabricate 3D structure in 3D 

bio-printing [9]. Bio ink are classified into two 

types Natural and Synthetic bio-inks.  

2.1 NATURAL BIO-INKS  

Natural hydrogels or bio-inks are important role in 

bio inks for 3D bio printing of tissues and organs 

because, it is highly biocompatible with the other 

tissues and it is adaptable for the structural and 

functional organization of cells. Natural polymers 

are Collagen, Gelatin, Alginate, Agarose, Fibrin 

etc.,  

2.1.1 COLLAGEN  

Collagen type I is the main structural protein 

component of various connective tissues in the 

extra cellular matrix (ECM) of body and it is the 

most abundant protein in mammals [10]. Collagen 

maintain the cell adhesion, proliferation, 

differentiation and migration [11]. Collagen type I 

hydrogels shows a greater bio-compatibility and 

highly bio active presenting cell-adhesion sites. 

Which have been widely used in many bio medical 

application [12,13]. Collagen hydrogel is too weak to 

fabricate the scaffolds so, it is used with other 

polymers [14].  

2.1.2 GELATIN  

Gelatin is a protein material. The main origin of 

gelatin is animals. It is obtained from the bones, 

cartilage, tendons, ligaments and skin of animals 

such as cattle, pigs, and also obtained from fishes 

or chickens. Gelatin is derived from the partial 

hydrolysis of collagen obtained from the animals 

which mentioned in the previous or above 

sentence. Gelatin is commonly used for increasing 

emulsification, thickness and elasticity [15,16]. In 

tissue engineering field it is widely used due to its 

excellent, bio-compatibility, bio-degradability, 

non-immunogenicity and also cell-interactivity 
[17]. Gelatin that undergoes changes in response to 

external temperature. Gelatin undergoes reversible 

sol-gel transition by cooling below 35oC [18].  

2.1.3 ALGINATE  

Alginate is a polysaccharides naturally occuring 

anionic polymer derived from sea weeds which is 

macroscopic algae growing in the marine and 
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shallow coastal waters and on rocky shores [19]. 

Alginate is an anionic block co-polymer 

containing 1,4-linked beta-D-mannuronic (M 

block) and alpha-L-guluronic acid (G blocks) [20]. 

Alginate hydrogels are widely used as biomaterials 

in the tissue engineering, drug delivery system and 

wound healing [21,22]. When multivalent cation 

calcium added into the aqueous solution of 

alginate forms a ionic inter-chain bridges that 

produce fast sol-gel transition. Cations preferably 

binding to the alpha-L-guluronic acid (G block) of 

the chains but in recent studies the M blocks has 

also has an active role in cross-linking the polymer 

chain [23].  

2.1.4 AGAROSE  

Agarose is a hydrophilic polysaccharide, it is 

extracted from red algae. The main structure of 

agarose consist of altering the units of beta-D-

galactopyranose and 3,6-anhydro-alpha-L-

galactopyranosyl units [24]. In nerve regeneration, 

the agarose is taken as optimal material for 

scaffold, due to its biocompatibility and stability in 

spinal cord [25]. It is not biodegradable by the 

mammals but, degraded in vitro by agarases. They 

are classified into 3 types based on their cleavage 

pattern α-agarase, β-agarase and β-porphyranase 
[26,18].  

2.2 SYNTHETIC BIO-INKS  

Synthetic hydrogels are used in the 3D bio printing 

application, including polyethylene glycol (PEG), 

Polyvinyl pyrrolidine (PVP), poly (L- Lactic) acid 

(PLA), poly (Latic-co-glycolic) acid (PLGA) etc.,  

2.2.1 POLY ETHYLENE GLYCOL(PEG) 

Polyethylene glycol is a synthetic polymer. It has 

both hydrophilic and hydrophobic properties, it is 

soluble in organic solvents or aqueous solvent and 

has high biocompatibility[27]. It is applied for 

wound dressing and drug delivery system [28]. 

Polyethylene glycol is one of the most widely used 

hydrogels in the scaffold, drug delivery and cell 

research [29].  

2.2.2 POLYVINYL PYRROLIDINE(PVP) 

Polyvinyl pyrrolidine is also known as povidone. 

It is soluble in water and also soluble in organic 

solvents. The complex formation of Iodine with 

polyvinyl pyrrolidine gives effective disinfectant 

having low toxicity [30]. It is a synthetic polymer 

which undergoes crosslinking and form hydrogel. 

These hydrogels synthesized by using many 

methods such as gamma-radiation, UV-photo 

crosslinking, electron beam radiation etc., [31].  

3.PROPERTIES OF BIO-INKS 

Bio-ink required some properties, they are bio-

printability, biocompatibility, viscosity etc.,  

3.1 BIO PRINTABILITY 

Printability is the capacity of bio-ink to form and 

maintain 3D scaffolds [32]. Bio printability of bio 

ink was accessed by using various factors like 

viscosity, surface tension, cross linking ability and 

ink consistency [33]. Printability is important 

properties for bio printing, It should be imitate 

both the shape and cellular architecture [34]. 

Storage modulus, solid-liquid transition stress and 

the flow transition index are the three rheological 

parameters, to predict the printability [35]. 

Viscosity is playing major role in printability. If 

the viscosity is low then the deformation and 

collapse will occur. On the other hand, nozzles will 

be jammed when the viscosity is high. It must be 

overcome by increasing temperature(T1) in the 

nozzles with the mixture and then eject under the 

cooled temperature (T2). The T1 should be greater 

than the melting temperature to avoid jamming 
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nozzle. T2 should be lower than the solidification 

temperature to fix the printed structure [36].  

3.2 BIO COMPATABILITY  

Bio compatibility is the major properties for 

preparing hydrogels. Because, the 3D printed 

structure using hydrogels is transplanted into the 

human or animal body. So, we must be consider 

the compatibility [37]. Various experiments is used 

to determined the bio compatibility like invitro 

cytotoxicity screening, direct cell culture, agar 

diffusion testing etc., The bio compatibility is 

defined as the ability of bio ink for 3D bioprinting 

to provide its desired activity that will enhance the 

cell adhesion, proliferation, viability, activity and 

tissue regeneration without producing toxic or 

unwanted effect [38].  

3.3 VISCOSITY  

This is also a important factor for choosing bio ink 

for3D printing. The stability of the 3D structure 

may be increased by enhance the viscosity of bio 

ink but it also leads to clogging the nozzle while, 

less viscous ink provide compatible with other 

cells but resist the printability due to poor flow. It 

should be overcome by regulate the concentration 

of polymer, molecular weight and temperature [39].  

4.  METHODS  

There are various methods for bioprinting like, 

Inkjet-based, extrusion-based, laser-assisted, 

stereolithography, Fused deposition modeling, Vat 

polymerization [40]. Among these extrusion-based, 

inkjet-based and laser-assisted are the main 

bioprinting technique used for 3D bioprinting [41] 

is discussed below. 

4.1 EXTRUSION-BASED BIOPRINTING 

Extrusion-based methods are most commonly 

employed for bioprinting in recent years. It print 

high densities cell [42]. Bio ink have low viscosity 

in the range of 30-6 x 107 mpa.s are used in the 

extrusion based bio printers [43]. While high 

viscosity can leads to clogging the nozzle tip and 

it can be overcome by adjusting the nozzle tip 

diameter [44]. Compared to the laser or inkjet-based 

system the resolution is low in extrusion-based 

printing that is 200µm [45]. The distribution of 

material is achieved by either piston-driven, 

pneumatic system or screw driven [46]. The 

principle involved in the extrusion-based 

bioprinting is the bio ink extrudate from the 

syringe through nozzle by a continuous force 

which is driven by pneumatic, piston or screw 

pressure. The micro filament (extruded material) 

after solidifying on the substrate it act as an 

support structure. The substrate may be culture 

dish or growth medium. It can be influenced by 

temperature, nozzle diameter, pressure, speed etc., 
[47]. Among this, pneumatic system show great 

result with high viscous materials with the help of 

compressed air as the driving force and it can also 

have limitation due to the presence of compressed 

gas it delays the distribution of material [48]. On the 

other hand piston driven system shows more 

control over the fluid flow whereas screw based 

printing provide the more spatial control [49]. 

Adjustability of viscous, bio ink phase and 

material-specific bio-fabrication window are the 

three main factors to print through extrusion 

printers [50].  

4.2 INJLET-BASED BIOPRINTING  

Inkjet-based bioprinters are cheap and it also work 

in the mild conditions [51]. The natural bio-ink is 

used in the inkjet based bioprinting that is 

collagen, fibrin etc., [52]. Inkjet based printing is 

classified into two major categories: Continuous 

inkjet printing (CIJ) and Drop-on-demand (DOD) 

inkjet printing [53]. In continuous inkjet printing the 

liquid ink is directed by a high pressure pump to 
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form droplets continuously through a microscopic 

nozzle. Drop-on-demand are two types: Thermal 

DOD and Piezoelectric DOD. In bioprinting 

applications, Piezoelectric DOD is recommended 

because thermal DOD may cause damage or death 

of living cells and also it have some advantage 

over CIJ printing because it may have chances of 

contamination. In DOD the inkjet dispenser eject 

the bio-ink to form a microspheres droplets further 

it formed into 2D or 3D pattern by deposition on 

substrate [54]. When the droplet deposit on the 

substrate the impact will occur which leads to 

affect the repeatability and the dimensional 

accuracy. The impact is based on the droplet 

velocity and volume [55]. Different physical and 

chemical crosslinking mechanism such as 

crosslinking agents, PH  and UV-radiation are 

used to solidify the deposited droplets on the 

substrate to form 3D structure [56]. The driving 

force for the ejection onto the substrate is thermal 

or sound [57]. The droplet size is influenced by 

temperature thus increase in temperature lead to 

decrease in the droplet size [58]. 

4.3 LASER-ASSISTED BIOPRINTING 

Laser-assisted bioprinting (LAB) is a Laser-

guided direct writing based on the principle of 

Laser-Induced Forward Transfer (LIFT) [59]. It is a 

non-contact printing device [60]. It consist of two 

horizontal co-planar glass slide, The upper slide is 

referred as “Donor slide” and the lower slide is 

referred as “Collector slide”. The upper Donor 

slide is coated with a two different laser absorbing 

material that is light absorbing gold layer and a cell 

layer or biological material. The laser is focused 

through the upper donor slide into the absorbing 

gold layer, which locally evaporated. The collector 

slide provide a suitable environment to the bio-ink 

(usually a solution embedded with cells) to prevent 

from the dehydration [61,62]. The donor glass slide 

in the size range of 26 x 26 x 1 mm and it was 

cleaned with acetone [63]. The laser source is a solid 

Nd:YAG crystal laser which is driven by a 

scanning system consist of two galvanometric 

mirrors [64]. The resolution of Laser-assisted 

bioprinting varies depending upon size from 

picometer to micrometer. The bio-ink viscosity, 

thickness, surface tension and wettability of 

substate influence the resolution [65]. It has higher 

printing accuracy and resolution than nozzle-based 

printing like extrusion-based and inkjet-based 

bioprinting. Bio ink having viscosity range of 1-

8000 mPa.s used in the Laser-assisted bioprinting. 

It has a high cell viability than other bioprinting 

techniques [66].  

CONCLUSION 

In this review article, the classification of bio ink 

used in bioprinting and the types of bioprinting 

techniques are discussed. The 3D bioprinting is 

useful for the future research related to the 

pharmaceutical science and medicine. It also a 

powerful technology used in tissue and organ 

printing. 
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