

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

[ISSN: 0975-4725; CODEN(USA): IJPS00] Journal Homepage: https://www.ijpsjournal.com

Review Article

Application of TLC Bioautography for Natural Bioactive Screening

Vishwa Patel¹*, Niyati Acharya²

¹Assistant Professor, Department of Pharmaceutical analysis, Sardar Patel College of Pharmacy, Bakrol. ²Head of Department of Pharmacognosy, Institute of pharmacy, Nirma University.

ARTICLE INFO

Published: 10 May 2025 Keywords: Thin layer Chromatography-Direct Bioautography, Screening natural products, Agar diffusion, Immersion bioautography, Direct bioautography. DOI: 10.5281/zenodo.15378848

ABSTRACT

Bioautography is a mean of targeted-directed isolation of active molecules on chromatogram. Bioautography is technique to detect substances affecting the growth rates to test organisms in complex mixtures and matrices. The antimicrobial, antioxidant and enzyme inhibitory activities can be performed on TLC bioautography. Bioautography methods are divided into three categories. 1)Agar diffusion or contact bioautography 2) Immersion or agar-overlay bioautography 3) Direct bioautography. High throughput method enabling analyses of many samples in parallel and the comparison of their activity. Both screening and semi-quantitative analysis is possible. The targeted compounds can be identified using spectroscopic methods, that can be performed directly on a TLC plate. This review summarizes known TLC-bioautography methods and their applications for determining the presence of enzyme inhibitors in extracts, preliminary screening, natural products possessing these biological activities and for the bioactivity-directed fractionation and isolation of active components from complex extracts. It also indicates the current state and perspective of the development of TLC-bioautography and its possible future applications.

INTRODUCTION

Planar chromatographic analysis hyphenated with the biological detection method is known as Bioautography ^[1].It is effective and inexpensive technique for the phytochemical analysis of plant extracts to identify bioactive lead/ scaffolds. It can thus be performed both in highly developed laboratories as well as in small laboraties which have maximum access to sophisticated equipment ^[2]. In 1964, Goodall and Levi introduced paper chromatography (PC)- based bioautography for the first time to estimate the purity of penicillin ^[3]. In 1961, Fisher and Lautner and Nicolaus et.al introduced thin layer chromatography (TLC) based bioautography ^[4].The first review on bioautography was written by Betina in 1973 ^[5]. TLC can separate many samples in parallel and has

*Corresponding Author: Vishwa Patel

Address: Assistant Professor, Department of Pharmaceutical analysis, Sardar Patel College of Pharmacy, Bakrol.

Email : vishwa091098@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

an open layer that allows for solvent evaporation, it appears to be the perfect technique for hyphenation with bioautographic detection. Besides classical TLC, High performance thinlayer chromatography (HP-TLC), Over pressuredlayer Chromatography (OPLC) and planar electrochromatography (PEC) can also be easily linked to bioautography ^[6-12]. Thin-layer chromatographydirect bioautography (TLC-DB) is one of three variants of a TLC bioautography method (the others are contact and agar overlay bioautography) in which separation given assay visualization are performed directly on a TLC plate ^[13-15]. The major application of bioautography are the fast screening of a large number of samples for bioactivity like antibacterial, antifungal, antioxidant, enzyme inhibition, antimicrobial etc. In this review, the techniques and application of bioautography are discussed in detail with suitable examples.

Bioautography Methods:

Three bioautographic methods are 1) Agar diffusion or contact bioautography 2) Immersion or agar overlay bioautography 3) Direct TLC bioautography.

Bioautography	Basic Procedure	Specification
Agar diffusion	Inoculation with microbial	Applying for chromatography silicic acid
or	strains.	Fiber sheets and Chroma AR still helped to
Contact	Allowing diffusion into	avoid these shortcomings.
bioautography	agar media.	
	Incubation.	
Immersion	Solidification.	A combination of direct and contact
or	Incubation.	bioautography is agar overlay.
Agar-overlay	Staining with tetrazolium	It is highly recommended to use agar overlay
bioautography	salt.	when direct bioautography cannot be
		completed.
TLC- Direct	Dipping of chromatogram	Direct bioautography is usually perform
bioautography	in microbial strains.	without agar gel.
	Spraying with tetrazolium	Plant extracts can be quickly screened
	salt incubation under humid	chemically and biologically using TLC-direct
	condition for 48hr.	bioautography.
	Indicate antimicrobial	"Agar spray assay" is a recently discovered
	leads.	bioautographic technique that can be thought
		of as an agar variant of direct bioautography.

(Table:1 Types of Bioautography)

Figure 1: Scheme of bioautographic methods. (HP-TLC) (High Performance Thin layer chromatography)

2.1 Agar diffusion or contact bioautography [16-20]

The technique with the least usage is agar diffusion. It entails the antimicrobial agent being transferred by diffusion from the chromatogram (PC or TLC) to an agar plate that has already been inoculated with the pathogen under investigation. The agar plate is incubated and the chromatogram is taken out after a few minutes or hours to allow for diffusion. The areas where the antimicrobial chemicals come into touch with the agar layer are where the growth inhibition zones develop. The growth requires an incubation period of 16 to 24 hours, however, this can be shortened to 5 to 6 hours by spraying 2,6-dichlorophenol-indophenol or 2,3,5-tetrazolium chloride. Antimicrobials had to be diluted and lost during the process of moving them from chromatographic plates to agar, which followed the same general procedure. An other unique instance involves the bioautographic identification of 6-aminopenicilanic acid, a very weak antibiotic that needs to be transformed into benzyl penicillin by phenyl acetylation. This is achieved by chromatographic plates or paper with acetyl chloride under mildly alkaline conditions prior to bioautography. Microbiologists are accustomed to using this method to find antibiotics in bacteria, and several techniques have been applied to enhance its efficacy.

2.2 Immersion or agar overlay bioautography [21-25]

Combining contract and direct bioautography is known as agar overlay. Using this technique, a melted, seeded agar media is applied on the chromatogram. The growth or inhibition bands are visible after solidification, incubation, and staining (often with tetrazolium dye). An agar solution containing the red-colored bacterium Serratia marcescens can be used to identify gram-negative bacteria. After an overnight incubation period at room temperature, the red-colored gel takes on a white or pale yellow, indicating inhibitory zones. Through the use of a dehydrogenase activity, microbes transform the tetrazolium salt (MTT) into corresponding highly colored formazan, allowing other colorless zones of microbial growth inhibition to be seen. The agar overlay assay has

been applied to bacteria, including Bacillus subtilis, E. coli, Pseudomonas, and Staphylococcus aureus, as well as yeast, and Candida albicans.

2.3 TLC-DB (Thin layer chromatographydirect bioautography) ^[26-28]

A suspension of microorganisms growing in nutrient broth is applied to a designed TLC plate (TCL-DB of antimicrobials), which is subsequently incubated in a humid environment. The bacteria grows straight on a TLC plates surface, avoiding antimicrobial areas. 3-{4,5dimethylthiazol-2-yl}-2,5-diphenyltetrazolium

bromide, or MTT, is the most widely used tetrazolium dye. Addition of detergent (e.g., Triton X-100) to the dye can boost the reduction of tetrazolium salts many times. The purple formazan that results from the dehydrogenases of live microorganisms transforms tetrazolium salt. Inhibition zones, which are cream-colored patches that occur on a purple backdrop, indicate the of antimicrobial presence drugs. Gram-positive Bacillus subtilis Aerobic Bacteria and Gram-negative Escherichia coli are the most commonly utilized test bacteria. Additionally, TLC can be hyphenated with bioluminescence. Detection mostly employing Photobacterium phosphoreum, also known as luminous Vibrio phosphoreum, and Aliivibrio fischeri, formerly known as Vibrio fischeri. The metabolism of bacteria is disrupted by antibacterial agents and other bacterially toxic substances (such as pesticides, heavy metals, and mycotoxines), which ultimately results in the cessation of the bacteria's luminescence. The TLC plate was quickly immersed in a bacterial broth suspension that had been infected with luminous bacteria, and it was then viewed at 490 nm using a luminograph or CCD (cooled charged coupled device) camera. Toxic chemicals are indicated by variations in the emission of blue-green light (darker or brighter zones), which are linked to disruptions in essential cell activities. The technique can be regarded as a direct bioautography even though there are no alterations in bacterial growth.

Application Of Bioautography

The majority of applications for thin-layer chromatography bioautography (TLC-B) use microorganisms, such as fungi and bacteria, as testing organisms. The development of novel antibiotics is a particularly crucial goal in light of the growing microbial resistance to conventional antibiotics in both medicine and veterinary practice.

Ref. No	Name of plant material/extracts	Activity reported/bacterial strain	Chromatographic condition	Bioassay	Conclusion
[29]	Saraca indica linn (Acetone extract) Family: Caesalpiniaceae	Activities: Vibriocidal activity Antibacterial activity	Mobile phase: methanol: water (70:30 v/v) Stationary phase: Silica gel 60 F ₂₅₄ TLC plate	HPLC/TLC bioautography	The aqueous extracts of A. Sativum were the most efficacious, although the acetone extracts of S. indica and D. stramonium
		Bacteria:			

Vishwa Patel, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 5, 1376-1386 | Review

	Datura stramonium linn (Acetone extract) Family: Solanaceae	Gram-negative bacteria Vibrio cholerae Vibrio parahaemolyticus	Column: Reverse phase Lichrosphere C18 column (250 mm × 4.6 mm,5 μm)		were more potent in most cases.
	Allium sativum Linn (Aqueous extract) Family: Liliaceae		Wavelength: UV 310 nm Flow rate : 0.7 ml/min		
[30]	Erycibe obtusifolia (E.obtusoifolia) (Crude extracts) Family: Convolvulaceae	Activities: Antioxidant activity Xanthine oxidase inhibitor Antifungal activity	Mobile phase: 0.1% formic acid Stationary phase: Silica gel 60 F ₂₅₄ TLC plate Column: XBridge C18 column (19 ×150 mm,5 μm)	DART-MS/TLC bioautography	Effective treatment for gout and disorders associated with oxidative stress is provided by E. obtusifolia.
		Fungus: Penicillium italicum	Wave length: UV 290 nm Flow rate: 1 mL/min.	-	
[31]	Rumex crispus L. (R. crispus) Rumex sanguineus L. (R. sanguineus) Family: Polygonaceae	Activity: Anti-A. baumanni activity Antimicrobial activity	Mobile phase: Ethyl acetate:toluene:formi c acid:water (80:10:5:5 v/v/v/v) Stationary phases: Silica gel 60 F254 aluminum plates	HPTLC- bioautography/L C-DAD-MS	The application of R. sanguineous and R. crispus extracts for wound healing.
	Torygonaccae	Bacteria: Gram negative bacteria Acinetobacter baumannii Klebsiella pneumoniae Emodin E-coli	Column: Zorbax Eclipse XDB-C18 column (50 mm×4.6 mm,1.8 μm) Wave length: UV 366 nm Flow rate: 0.8 ml/min		
[32]	Phlomis tuberosa (P. tuberosa) Family : Lamiaceae	Activity: α-glucosidase inhibitory activity	Mobile phase: ethyl acetate:methanol:wat er (15:2:1 v/v/v) Stationary phase: Silica gel 60 F254 TLC plates Column: Agilent Zorbax SB-C18 column (250 mm× 4.6 mm, 5 μm) Wave length: UV 366 nm	SEP BOX/TLC bioautography	P. tuberosa compounds showed much greater α- glucosidase inhibitory capabilities, suggesting that they could be used as substitute medications for diabetes mellitus.

			Flow rate: 1 mL/min		
[33]	Philippine Piper	Activities:	Mobile phase: ethyl	GC-MS/ TLC	The potential for P.
	betle Linn	Antibacterial activity	acetate: n-hexane (7	bioautography	betle to yield
	(Ethanol extract)	Antimicrobial activity	:3 v/v)		innovative
	Family:				therapeutic
	Piperaceae		Stationary phase:		antibacterial
			silica gel 60 F254		compounds that can
			TLC plates		treat particular
			-		illnesses or ailments.
		Gram-positive MDR			phytochemical
		bacteria: <i>Methicillin</i>	Column:Elite-5 MS		examination of P.
		resistant	capillary column		bette s secondary
		(MPSA) and	50mm×0.25 mm, 25		include cononing
		(MASA) and	μin Wave longth: for sin		alkaloida tarponida
		Enterococcus (VRE)	wave length: for six		nhanolic acids and
		Emerococcus (VRE)	Danus: U v 234 mm		flavonoids
		Gram pagativa MDP			navonoids.
		bacteria: Carbananam-	For eight hands:		
		resistant	IV 366 nm		
		Enterobacteriaceae	0 7 500 mm		
		(CRE) Klebsiella	Flow rate 1 ml /min		
		<i>pneumoniae</i> and			
		metalloid-B-lactamase			
		(MBL)			
[34]	Onopordon	Activities:	Mobile phase: ethyl	TLC	This plant is used in
	Macrocephalum	Antioxidant activity	acetate:methanol:wat	bioautography	traditional medicine
	Ōr	Antimicrobial activity	er:glacial acetic		to treat a number of
	Scotch thistle	Antibacterial activity	acid:formic acid		ailments linked to
	(Methanolic		(63:4:5:2:1v/v/v)		liver disorders and
	extract)		Stationary phase:		bacterial infections.
	Family:	Bacteria:	silica gel 60 F254		
	Asteraceae	Gram- positive	TLC plates		
		bacteria	Wave length: UV		
		Bacillus cereus	245nm and 365nm		
		Staphylococcus aureus			
[35,36]	Green Tea	Activities:	Mobile phase:	TLC	The biologically
	(Camellia)	Antibacterial activity	Chloroform:ethyl	bioautography	active substances,
	(Methanol,	Antioxidant activity	acetate:acetic acid		including glycosides,
	ethanol & DMSO		(50:50:1)		alkaloids, phenols,
	Extracts)				and Havonoids. It has
	Fainiy. Theorem		Stationary phase		that polar solvents
	Theaceae	Bactoria	Silica gel 60E 264		with bioactive
		Gram positivo	TI C plata		components have
		cocci	Column. Zorbay		antioxidant and
		Saurous	Felinse XDR_C18		antibacterial
		S. nvogene	$\frac{1}{10000000000000000000000000000000000$		properties.
		S. PJOSene	mm.1.8 um)		r r
			Wavelength:		
		Gram-negative	UV 360 nm		
		E coli	Flow rate: 1 mL/min		

			S. marcescens			
[37]	Ficus carica Linn (Ethyl Acetate Extract) Family: Moraceae	Activities: Antibacterial activity Bacteria:	Mobile phase: chloroform:methanol (7: 3) Stationary phase: silica gel E254 TLC	TLC-DB Ethy bee numero the antibi because	Ethyl acetate has been used in numerous studies on the isolation of antibiotics. This is because ethyl acetate	
			Escherichia coli	plateWave length: UV254 and 366 nm		makes it simple to isolate antibiotics, which are typically semipolar.
	[38,39]	Justicia wynaadensis (Nees) T.Anders (methanol extract) Family: Acanthaceae	Activities: Antibacterial activity Antimicrobial activity Bacteria: Gram negative bacteria Klebsiella pneumoniae	Mobile phase: petroleum ether :ethyl acetate (7:3) Stationary phase: Silica gel 60F ₂₅₄ TLC plate	TLC/GC-MS	The antibacterial properties of J. wynaadensis's methanolic extract against Klebsiella pneumoniae may be ascribed to fatty acids including stearic acid, myristic acid, palmitic acid, and linoleic acid as well as volatile components like phytol.
	[40]	Salvia officinalis Linn. (S. officinalis L) (Sage Extract) Family: Lamiaceae	Activities: Antibacterial activity Antioxidant activity Bacteria: Staphylococcus aureus Bacillus subtilis methicillin-resistant S. aureus (MRSA)	Mobile phase: chloroform:diethyl ether:methanol (30:10:1 v/v) Stationary phase: aluminum-backed TLC Si ₆₀ F ₂₅₄ plates Column: Rt-β- DEXm (Restek) capillary column, 30 mm, 0.25mm Wave length: UV 365nm Flow rate:0.5 mL/min	LC-MS- MS/TLC-DB	Sage extract, a natural antioxidant utilized in the food sector, has excellent antioxidant qualities. Salvigenin and cirsimaritin are two examples of flavonoids that have anti-inflammatory, analgesic, and antioxidant qualities.
	[41]	Acacia Senegal (Crude extract) Family: Fabaceae	Activity: Antioxidant activity Antibacterial activity Bacteria: E-coil S.pyogenes V. Cholera	Mobile phase: Chloroform Stationary phase: Silica gel 60F254 TLC plate	TLC-DB	Phytochemical examination to look for cardiac glycosides, phenols, flavonoids, and saponins.The plant was applied externally to sooth irritated areas and

					was used to treat diabetes.
[42]	Vetiver	Activities:	Mobile phase:	TLC	Vetiver zizanoides
	Zizanoides	Antimicrobial activity	toluene: ethyl acetate	Bioautography	and Phragmites karka
	(ethanol extract)		(93:7 v/v)		solvent extracts have
	Family:	Bacteria:	Stationary phase:		the potential to be
	Poaceae	Gram positive bacteria	pre-coated		employed as
	Phragmites karka.	S. aureus	aluminium silica gel		antimicrobial drugs
	(diethyl ether		G 25 plates		against infectious
	extract)		Column: Elite-5 MS		agents and to treat a
	Family:		30×mm×0.25 mm,		variety of infectious
	Poaceae	~ .	$25 \mu m$ capillary		disorders.
	Manuka	Gram negative	column		TLC-bioautography
	(Leptospermum)	bacteria	Wave length: UV		protocol for
	scoparium)	Salmonella paratyphi	235nm		assessing the
		Klebsiella pneumonie	Flow rate: 1 mL/min		of Loptospormum
	extracts	Fungus:			scoparium The
		Sperginus niger Candidas albicans			minimum effective
[43]		A ctivities	Column: GOLD	TLC	dose (MED) was
[10]		Antimicrobial activity	C18 Column, $100 \times$	Bioautography	observed to be 0.29–
		7 minineroorar activity	2.1 mm, particle size	& HR-ESI-MS.	0.59 µg/cm^2 against
			1.9 µm	and -MS/MS	S. aureus and 2.34–
			Solvent A		4.68 µg/cm2 against
			water/0.1% formic		E. coli. The
		Bacteria:	acid,		enhanced protocol
		Gram positive bacteria	Solvent B		demonstrated
		S. aureus and E. coli	acetonitrile/0.1%		suitability for both S.
			formic acid		aureus and E. coli.
			Inject volume- 5 µL		

CONCLUSION

In spite of wide employment of sophisticated chromatographic techniques coupled with on-line bioassays, bioautography is still proving its worth as a simple and inexpensive tool for simultaneous chemical-biological screening of natural sources. In other word, it offers the simplest mean of bioassay guided lead discovery from natural products. For the natural product the separation process is not easy, and if separated the amount is very less in maximum cases, so it is necessary to develop a process which can detect lead in a small amount and biological activity can also be measured successively. The standard experimental procedures are required for TLC antioxidant and antimicrobial assays. Some new enzymes should be attempted and adopted on TLC bioautography. The existing TLC methods for enzyme inhibition need more application studies to assess their screening capacity in the discovery of active compounds. The GC-MS or LC-MS approaches TLC have gradually been coupled to bioautography for fast structural characterization of active compounds. Considering these problems,

we can say that bioautographic detection technique would create a new era in separation science.

REFERENCES

- Hostettmann K, Terreaux C, Marston A, Potterat O. The role of planar chromatography in the rapid screening and isolation of bioactive compounds from medicinal plants. JPC. Journal of planar chromatography, modern TLC. 1997;10(4):251-7.
- 2. Goodall RR, Levi AA. A microchromatographic method for the detection and approximate determination of the different penicillins in a mixture. Nature. 1946 Nov 9;158(4019):675-6
- 3. Fischer R, Lautner H. On the paper chromatographic detection of penicillin preparations. Archiv der Pharmazie und Berichte der Deutschen Pharmazeutischen Gesellschaft. 1961 Jan 1;294:1-7.
- BJ N, Coronelli C, Binaghi A. Microbiological determination of antibiotics by thin layer chromatograms. Experientia. 1961 Oct 1;17:473-4.
- Betina V. Bioautography in paper and thinlayer chromatography and its scope in the antibiotic field. Journal of Chromatography A. 1973 Apr 11;78(1):41-51.
- 6. Heinemann B, Howard AJ, Hollister ZJ. Application of paper chromatograms to the study of inducers of λ bacteriophage in Escherichia coli. Applied Microbiology. 1967 Jul;15(4):723-5.
- Bohlin L, Bruhn JG, editors. Bioassay methods in natural product research and drug development. Springer Science & Business Media; 1999 Jan 31.
- Wagman GH, Bailey JV. Use of silicic acid glass fiber sheets for bioautography of antimicrobial substances. Journal of Chromatography A. 1969 Jan 1;41:263-4.

- 9. Rios JL, Recio MC, Villar A. Screening methods for natural products with antimicrobial activity: a review of the literature. Journal of ethnopharmacology. 1988 Jul 1;23(2-3):127-49.
- 10. Sherma J. Planar chromatography. Analytical chemistry. 1992 Jun 1;64(12):134-47.
- Meyers E, Smith DA. Bioautography of antibiotic spread-layer chromatograms. Journal of Chromatography A. 1964 Jan 1;14:129-32.
- Narasimhachari N, Ramachandran S. A simple bioautographic technique for identifying biologically active material on thin-layer chromatograms. Journal of chromatography. 1967 Apr;27(2):494.
- Betina V. A Paper Chromatography Method for the Determination of Suitable p H Values for the Extraction of Antibiotics. Nature. 1958 Sep 20;182(4638):796-7.
- 14. Caccamese S, Cascio O, Compagnini A. Isolation of an antimicrobial bromoditerpene from a marine alga aided by improved bioautography. Journal of Chromatography A. 1989 Jan 1;478:255-8.
- 15. VanderKOP PA, MacNEIL JD. Separation and detection of monensin, lasalocid and salinomycin by thin-layer chromatography/bioautography. Journal of Chromatography. 1990;508(2):386-90.
- 16. Harborne AJ. Phytochemical methods a guide to modern techniques of plant analysis. springer science & business media; 1998 Apr 30.
- 17. Meyer JJ, Dilika F. Antibacterial activity of Helichrysum pedunculatum used in circumcision rites. Journal of Ethnopharmacology. 1996 Jul 26;53(1):51-4.
- 18. Dilika F, Afolayan AJ, Meyer JJ. Comparative antibacterial activity of two Helichrysum species used in male circumcision in South

Africa. South African Journal of Botany. 1997 Jun 1;63(3):158-9.

- 19. Müller MB, Dausend C, Weins C, Frimmel FH. A new bioautographic screening method for the detection of estrogenic compounds. Chromatographia. 2004 Aug;60:207-11.
- Simões-Pires CA, Hmicha B, Marston A, Hostettmann K. A TLC bioautographic method for the detection of α-and βglucosidase inhibitors in plant extracts. Phytochemical Analysis: An International Journal of Plant Chemical and Biochemical Techniques. 2009 Nov;20(6):511-5.
- 21. Choma IM, Grzelak EM. Bioautography detection in thin-layer chromatography. Journal of Chromatography A. 2011 May 13;1218(19):2684-91.
- 22. Shahat AA, El-Barouty G, Hassan RA, Hammouda FM, Abdel-Rahman FH, Saleh MA. Chemical composition and antimicrobial activities of the essential oil from the seeds of Enterolobium contortisiliquum (leguminosae). Journal of Environmental Science and Health, Part B. 2008 Aug 4;43(6):519-25.
- Marston A. Thin-layer chromatography with biological detection in phytochemistry. Journal of Chromatography A. 2011 May 13;1218(19):2676-83.
- 24. Schmourlo G, Mendonça-Filho RR, Alviano CS, Costa SS. Screening of antifungal agents using ethanol precipitation and bioautography of medicinal and food plants. Journal of ethnopharmacology. 2005 Jan 15;96(3):563-8.
- 25. Silva MT, Simas SM, Batista TG, Cardarelli P, Tomassini TC. Studies on antimicrobial activity, in vitro, of Physalis angulata L.(Solanaceae) fraction and physalin B bringing out the importance of assay determination. Memorias do Instituto Oswaldo Cruz. 2005;100:779-82.
- 26. Sabo VA, Svircev E, Mimica-Dukic N, Orcic D, Narancic J, Knezevic P. Anti-Acinetobacter

baumannii activity of Rumex crispus L. and Rumex sanguineus L. extracts. Asian Pacific Journal of Tropical Biomedicine. 2020 Apr 1;10(4):172-82.

- 27. Runyoro DK, Matee MI, Ngassapa OD, Joseph CC, Mbwambo ZH. Screening of Tanzanian medicinal plants for anti-Candida activity. BMC complementary and alternative medicine. 2006 Dec;6:10.
- 28. Yang Y, Gu L, Xiao Y, Liu Q, Hu H, Wang Z, Chen K. Rapid identification of α-glucosidase inhibitors from Phlomis tuberosa by sepbox chromatography and thin-layer chromatography bioautography. PLoS One. 2015 Feb 6;10(2):e0116922.
- 29. Sharma A, Patel VK. In vitro screening of the antibacterial activity and identification of bioactive compounds from plants against selected Vibrio spp. pathogens. Turkish Journal of Biology. 2009;33(2):137-44.
- 30. Chen Z, Tao H, Liao L, Zhang Z, Wang Z. Quick identification of xanthine oxidase inhibitor and antioxidant from Erycibe obtusifolia by a drug discovery platform composed of multiple mass spectrometric platforms and thin-layer chromatography bioautography. Journal of separation science. 2014 Aug;37(16):2253-9.
- 31. Valle DL, Puzon JJ, Cabrera EC, Rivera WL. Thin layer chromatography-bioautography and gas chromatography-mass spectrometry of antimicrobial leaf extracts from Philippine Piper betle L. against multidrug-resistant bacteria. Evidence-Based Complementary and Alternative Medicine. 2016 Jan 1;2016.
- 32. Sharif S, Kitaz A, Al Kayali R. TLC screening and evaluation of antioxidant, antibacterial activity of Onopordon macrocephalum by bioautography method.
- 33. Bashir S, Khan BM, Babar M, Andleeb S, Hafeez M, Ali S, Khan MF. Assessment of bioautography and spot screening of TLC of

green tea (Camellia) plant extracts as antibacterial and antioxidant agents. Indian Journal of Pharmaceutical Sciences. 2014 Jul;76(4):364.

- 34. Sulistyani N, Narwanti I. TLC-bioautography profile of ethyl acetate extract of 5 bacteria isolated from Ficus carica L rhizosphere. International Journal of Public Health Science. 2015 Jun;4(2):81-7.
- 35. Ponnamma Manjunath TLC-SU, K. bioautography guided screening for compounds inhibitory Klebsiella to Justicia Wynaadensis pneumoniae from (Nees) T. Anders. Indian Journal of Applied Research. 2015;5(5):4.
- 36. Soni A, Dahiya P. Screening of phytochemicals and antimicrobial potential of extracts of Vetiver zizanoides and Phragmites karka against clinical isolates. International Journal of Applied Pharmaceutics. 2015 Apr 15:22-4.
- Choma IM, Jesionek W. TLC-direct bioautography as a high throughput method for detection of antimicrobials in plants. Chromatography. 2015 May 18;2(2):225-38.
- 38. Samrot AV, Sahiti K, Raji P, Rohan B, Kumar D, Sharma K. TLC bio-autography guided identification of antioxidant and antibacterial activity of Acacia senegal. Der Pharmacia Lettre. 2016;8(9):41-7.
- 39. Jesionek W, Majer-Dziedzic B, Horváth G, Móricz ÁM, Choma IM. Screening of antibacterial compounds in Salvia officinalis L. tincture using thin-layer chromatography direct bioautography and liquid chromatography-tandem mass spectrometry JPC-Journal techniques. of Planar TLC 2017 Chromatography-Modern Oct;30(5):357-62.
- 40. Zang Y, Cheng Z, Wu T. TLC bioautography on screening of bioactive natural products: an

update review. Current Analytical Chemistry. 2020 Aug 1;16(5):545-56.

- 41. Legerská B, Chmelová D, Ondrejovič M. TLC-Bioautography as a fast and cheap screening method for the detection of α -chymotrypsin inhibitors in crude plant extracts. Journal of biotechnology. 2020 Apr 10;313:11-7.
- 42. Xu W, Shi D, Chen K, Popovich DG. TLC-Bioautography-Guided isolation and assessment of antibacterial compounds from Manuka (Leptospermum scoparium) leaf and branch extracts. Molecules. 2024 Feb 4;29(3):717.

HOW TO CITE: Vishwa Patel*, Niyati Acharya, Application of TLC Bioautography for Natural Bioactive Screening, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 5, 1376-1386 https://doi.org/10.5281/zenodo.15378848

