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The combination of Artificial Intelligence (AI) and pharmaceutical science is creating 

exciting changes in the way new medicines are discovered and developed. Significant 

developments in artificial intelligence and machine learning offer a game-changing 

prospect for pharmaceutical dosage form testing, formulation, and medication 

discovery. AI can help lower development costs. In addition to predicting the 

pharmacokinetics and toxicity of potential drugs, machine learning techniques aid in the 

design of experiment. By prioritizing and optimizing lead compounds, this capability 

lessens the need for expensive and time-consuming animal testing. Artificial 

intelligence (AI) algorithms that evaluate actual patient data and their personalized 

medical strategies, improving patient adherence and treatment results. The many uses 

of AI in drug discovery, drug delivery dosage form designs, process optimization, 

testing, and pharmacokinetics/pharmacodynamics (PK/PD) research are examined in 

this thorough overview. This review focuses on how AI helps speed up the process, 

improve accuracy, and reduce costs by addressing the problems faced in traditional drug 

development methods. We explore the different ways AI contributes especially in 

identifying disease targets, selecting the most promising drug candidates, and making 

clinical trials more efficient. AI tools like machine learning, data analysis, and predictive 

models are giving researchers powerful ways to find patterns in large datasets, which 

helps in making better decisions during drug development. However, for AI to be truly 

effective, it needs access to high-quality data, careful handling of ethical concerns, and 

a clear understanding of its limitations. In this paper, we also look at the challenges of 

using AI - database availability, such as lack of transparency in decision making, 

regulatory frameworks and ways to overcome them by using explainable AI, combining 

AI with traditional lab research, data acquisition with biobanks and other computer 

aided drug design software like (autodock, discovery studio, chemdraw, ChEMBL) 

regulatory engagement, and improving data transparency. 
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INTRODUCTION 

1. Introduction to AI and it’s potential for use 

in drug discovery 

The application of artificial intelligence (AI) in 

medicinal chemistry has attracted considerable 

interest in recent years as a possible way to 

transform the pharmaceutical sector. The 

discovery of drugs, which involves finding and 

creating new treatments, is a complicated and 

lengthy undertaking that often depends on labor-

intensive methods like trial-and-error testing and 

high-throughput screening. Nonetheless, AI 

methods like machine learning (ML) and natural 

language processing have the ability to expedite 

and enhance this procedure by facilitating more 

precise and effective analysis of extensive data 

sets. AI-driven techniques have also successfully 

forecasted the toxicity of potential drug 

candidates. Various other research initiatives have 

emphasized the potential of AI to enhance the 

efficiency and effectiveness of drug discovery 

procedures. Employing AI in the creation of new 

bioactive compounds comes with its own 

challenges and limitations. Ethical factors should 

be considered, and additional research is necessary 

to comprehensively grasp the benefits and 

drawbacks of AI in this field. In spite of these 

difficulties, AI is anticipated to play a major role 

in creating new drugs and treatments in the coming 

years. Generative models can be used to create 

large libraries of compounds with certain 

characteristics traits for small molecule drug 

development projects. In a multiparameter 

Optimization project, the optimization of an 

artificial intelligence (AI) molecular generator to 

explore a given chemical space and propose new 

well-scored molecules is mostly based on 

molecular fingerprints and attributes However, the 

requirement to synthesis the molecules is one of 

the main obstacles in any computer-aided drug 

design (CADD) project. Few synthesizability 

scores have been reported in the literature to be 

employed in the pipeline of molecular production, 

while generative models are known to sample a 

large number of inaccessible compounds. The 

advancements in high-performance computer 

hardware and the access to multi-omics data have 

allowed artificial intelligence (AI) methods to 

move beyond theoretical research to practical 

applications across various fields. The effective 

use of AI methods, especially for analyzing 

biological data, has drawn the interest of the 

pharmaceutical sector. 

2. Limitations of the Current Methods in Drug 

Discovery 

Presently, medicinal chemistry techniques depend 

to a large extent on hit-and-miss methodology and 

large-scale testing methodologies [8]. These 

methodologies consist of screening huge numbers 

of prospective drug compounds, with the aim of 

finding those with the intended characteristics. 

Nonetheless, these methodologies are time-

consuming, expensive, and tend to produce results 

of low accuracy [6]. Besides, they are prone to be 

limited by the availability of adequate test 

compounds and the challenge of precisely 

forecasting their actions in the body [9]. Various 

AI-based algorithms, such as supervised and 

unsupervised learning techniques, reinforcement, 

and evolutionary or rule-based algorithms, have 

the potential to help solve these issues. These 

processes are generally data analysis-based on 

large amounts of data that can be utilized 

differently [9–11]. For example, the effectiveness 

and toxicity of novel drug compounds can be 

forecast using these methods, with more accuracy 

and effectiveness than through conventional 

methods [12,13]. In addition, AI-based algorithms 

can be utilized to find new targets for drug 

discovery, like the specific proteins or genetic 

pathways that contribute to diseases [14]. This is 

able to widen the range of drug discovery beyond 
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the restrictions of more traditional methods and 

could ultimately result in the discovery of new and 

more effective medicines [15]. Therefore, while 

the older methods of pharmaceutical research have 

been quite successful in the past, they are 

handicapped by their dependence on trial-and-

error experimentation and their failure to be able 

to predict the behavior of new potential bioactive 

compounds with any accuracy [16]. AI-based 

methods, however, can enhance the efficiency and 

accuracy of drug discovery processes and can 

result in the creation of more effective drugs. 

3. The Effects of AI on Drug Discovery and 

Future Cost Savings 

Another major use of AI in drug discovery is 

designing new compounds with desired properties 

and activities. Conventional techniques tend to 

depend on the discovery and modification of 

known compounds, which may be a time-

consuming and labor-intensive exercise. AI-driven 

methods can, however, facilitate the quick and 

efficient design of new compounds with desired 

properties and activities. For instance, a deep 

learning (DL) algorithm has been recently trained 

on a database of known drug compounds and their 

respective properties, to suggest new therapy 

molecules [10] with desired features like solubility 

and activity, proving the prospects of these 

methodologies in the efficient and fast design of 

novel drug candidates. DeepMind has recently 

proved to be a milestone in the domain of AI 

research along with the emergence of AlphaFold, 

an unprecedented software platform for the growth 

of our knowledge of biology [19]. It is a high-

performance algorithm that leverages protein 

sequence information and AI to forecast the 

proteins' respective three-dimensional structures. 

This structural biology breakthrough promises to 

transform personalized medicine and drug 

discovery. AlphaFold is a huge leap in the 

application of AI in structural biology and life 

sciences as a whole. ML methods and molecular 

dynamics (MD) simulations are now applied in the 

area of de novo drug design to enhance efficiency 

and precision. The method of merging these 

approaches is being investigated to leverage the 

synergies between them [20]. The application of 

interpretable machine learning (IML) and DL 

approaches is also helping towards this goal. By 

utilizing the strength of AI and MD, scientists are 

able to more effectively and efficiently design 

drugs than ever before. 

4. Resources and methods for ai-based drug 

design & discovery 

The basic schematics of applying AI techniques to 

drug discovery and evaluation are summarized in 

Figure 1. The major procedures include data 

collection and curation (Figure 1A), compound 

representation (Figure 1B), and AI methods and 

their applications in drug discovery (Figure 1C). 

To provide researchers with a catching-up view of 

the development in this field, we first introduced 

representative data resources, molecular 

representations and descriptors, and AI techniques 

in drug discovery. Then, we introduced the 

successful applications of AI to different stages of 

drug discovery. Finally, we discussed the 

challenges and future perspectives on applying AI 

to drug discovery. 
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Figure 1: Framework of AI technique application to drug discovery and evaluation. 

Major procedure includes (A) data collection and 

curation; (B) compound representations by using 

molecular descriptors; and (C) AI methods and 

their applications. ChEMBL is a manually 

annotated database that presently holds over 2 

million compounds with drug-like 

properties.7ChEMBL collects data on the action 

mechanisms, molecular properties, absorption, 

distribution, metabolism, excretion, toxicity, 

therapeutic indications, and target interactions of 

the deposited compounds. ChemDB is an open-

access database with about 5 million commercially 

available small molecules and their 

physicochemical properties, including molecular 

weight, solubility, and rotatable bonds.8 Besides 

these, a range of cheminformatics tools like 

Smi2Depict, MOL pro, AquaSol, and Reaction 

Predictor are incorporated into ChemDB, thus 

rendering the database convenient for drug 

discovery. The Drug-Gene Interaction Database 

(DGIdb) lists information on drug gene interaction 

and genes or gene products potentially capable of 

interaction with drugs.10Up until now, DGIdb 

encompasses over 40,000 genes and 10,000 drugs 

associated with greater than100,000 drug- gene 

interactions. Data are obtained from severalises 

sources using performance of expert curation and 

text mining. All of the genes submitted in DGIdb 

are assigned to 43 categories. Users may either 

navigate through the genes within a category or 

type in a list of genes or drugs to retrieve 

corresponding drug-gene interactions through the 

search module. Furthermore, DGIdb can be 

queried programmatically by API via the web-

based interface. Drug Bank is an open-access 

reference drug database.11It now hosts 14,746 

drugs with complete details of drug-drug 

interactions, drug-targets, drug classifications, and 

drug reactions. Users can search, browse, and 

extract text, images, and structural data in Drug 

Bank using the integrated tools. Drug Bank has 

emerged as the world's most popular resource for 

drug screening, design, and metabolism 

prediction. Drug Target Commons (DTC) is an 

open-access online resource that offers annotated 

and unannotated drug-target interaction (DTI) 

data.12For its latest release, DTC adds clinical 

trial information and disease-gene associations, 

enabling the chemical biology and drug-

repurposing uses of compounds. Being anopen 

resource, DTC not only offers database dump but 

also APIto retrieve its deposited data. Discoveries 
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of herb-focused drugs and the scientific 

explanation of traditional Chinese medicine. 

PubChem is an open-access chemical information 

database with the biological, physical, chemical, 

and toxic data of chemical molecules. All these 

facts are gathered from over 850 sources. 

PubChem allows its users to search for chemicals 

by entering molecular formula, structure, and other 

identifiers as keywords. Currently, PubChem has 

developed into one of the primary sources of data 

for computational drug discovery and design. Side 

Effect Resource (SIDER) is a drug-side effect 

database. The SIDER release under current 

version contains 1,430 drugs, 5,880 side effects, 

and 140,064 drug-side effect pairs. They can be 

navigated either through drugs or through side 

effects. The data have been applied to numerous 

areas, including predicting drug indications, min-

ing side effects, and metabolic dysregulation 

identification. The Search Tool for Interacting 

Chemicals (STITCH) is a database that holds 

known and predicted chemical-protein 

interactions. The interactions include 9,643,763 

proteins of 2,031 organisms, which were gathered 

from computational prediction, organism-to-

organism knowledge transfer, and other data-

bases. STITCH can be queried by users in various 

ways, including chemical and protein names, 

chemical structures, and protein sequences. For 

large- scale analysis, data in STITCH can be either 

bulk downloaded or accessed programmatically by 

API. 

5. AI Based Molecular descriptors and 

structure representations 

With the explosive growth of natural products, 

another key point in AI-based drug discovery and 
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analysis is the transfer of molecules into computer-

readable format, while keeping their intrinsic 

physicochemical properties.17Various types of 

descriptors have been proposed to represent drugs; 

these descriptors can be classified into four 

categories in accordance with their dimensionality 

(Figure 2). To speed up the drug discovery 

process, a chain of open-source toolkits have been 

suggested to compute molecular descriptors and 

structure representations, including 

OpenBabel18and ChemmineR.19The simplest 

molecular representation is the zero- dimensional 

(0D) descriptor; it is derived following the 

chemical formula ofdrugs.20The 0D descriptor 

generally encompasses molecular weight, atom 

number, atom-type count, and other elementary 

descriptors (e.g., number of heavy atoms). 

Figure 2. Summary of molecular and structural representation schemes 

The 0D descriptor is very straightforward, and it 

can only retrieve shallow information. The one-

dimensional (1D) descriptor maps drugs in 

accordance with their substructures, including the 

number of rings, functional groups, substituent 

atoms, and atom-centered fragments.20The 

components of the 1D descriptor are usually 

binary (e.g., 1/0 states the presence/absence of a 

substituent atom) or the frequency of occurrence 

of certain substructures. Besides the property- 

based1D descriptor, simplified molecular-input 

line-entry system (SMILES)21is another kind of 

1D descriptor. SMILES describes drugs as a 

sequence of characters. SMILES relies upon atom 

order, and hence, a drug will possess multiple 

SMILES structures, and the normalization 

algorithm must be carried out to get canonical 

SMILES. The two-dimensional (2D) descriptor 

extends information to the 1D descriptor by taking 

adjacency, connectivity, and other forms of 

topological features of atoms into account. Thus, 

2D descriptors are usually obtained by encoding a 

drug as a graph such that in the nodes represent 

atoms and edges represent bonds. Property-based 
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2D descriptors often consist of graph invariants, 

connectivity bonds, graph- based substructures, 

and topological descriptors. In order to obtain 

more information, the molecular fingerprint (FP) 

was suggested for encoding molecules in binary 

format.22FP represents the presence/absence of 

certain substructures by a string of a specified 

length and delineated by 1/0. The standard used2D 

FPs are molecular access system 

fingerprints,23daylight-like fingerprint,18and 

extended-connectivity fingerprints.24The three- 

dimensional (3D) descriptor represents a molecule 

in 3D space,25and every atom in a molecule is 

space-characterized by the x, y, and z coordinates. 

The 3D descriptor contains spatial and geometrical 

configuration information; it is of high information 

con-tent. Therefore, information on surface area, 

volume, and steric properties can be derived by 

employing 3D descriptors. Non-property-based3D 

descriptors, including geometrical fingerprint 26 

and pharmacophorefingerprint,27are also present. 

They are capable of describing advanced 

physicochemical properties of drugs and are used 

extensively in drug discovery and virtual 

screening. 

6. Application of AI to pharmaceutical 

analysis 

Pharmaceutical analysis consists of the activities 

of identification, determination, quantification, 

and purification of raw drug materials; it is a 

fundamental aspect of drug discovery. Qualitative 

and quantitative analyses are the two key 

categories of experimental methods in 

pharmaceutical analysis. Even though these 

methods have high accuracy, their price for 

screening new drug candidates from enormous 

amounts of natural products remains costly. In 

contrast with experimental methods, the expenses 

demanded by computational methods are 

insignificant. Therefore, AI methods have been 
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employed in pharmaceutical analysis in addition to 

experimental methods. The exemplary 

applications of AI methods in pharmaceutical 

analysis are outlined in Figure 3. 

Drug toxicity prediction 

Toxicity is a measure of the unwanted or adverse 

effects of chemi-cals.44Toxicity evaluation is one 

of the fundamental steps in drug discovery, and it 

aims to identify substances that have harmful 

effects on humans.45 However, the in vivo test 

requires animal tests and thus increases the costs 

of drug discovery. Computational approaches 

show the merits of predicting the toxicity of a 

chemical with low cost and high efficiency.46 As 

a result, a series of AI method- based approaches 

have been established to predict the toxicity of 

chemicals.47,48To evaluate the performance of 

various computational approaches to predict the 

toxicity of chemicals, the scientific community 

proposed the "Toxicology in the 21st Century 

(Tox21)"challenge.46DeepTox is an ensemble 

predictive model for the toxicity of chemicals, and 

its basic framework is a three-layer deep neural 

network (DNN).49After data cleaning and quality 

control, the remaining chemicals are represented 

by applying the above-mentioned 0D to 3D 

molecular descriptors, which are utilized as input 

of DNN. Deep Tox pipeline is achieved by 

hyperparameter tuning and optimizationof a group 

of hyperparameters, including number of hidden 

units, learningrate, and dropout rate. Comparative 

performance on the Tox21 data- set shows that 

Deep Tox surpasses its counterparts in toxicity 

prediction. 

Drug bioactivity prediction 

In real-life, most drugs of natural origin are useless 

owing to the absence of bioactivity. Therefore, 

measurement of drug bio activity has been a 

research field full of energy in drug discovery. 

Though in vitro and in vivo tests are capable of 

simulating the activities of molecules in the body, 

they remain time-consuming and costly. Due to 

their time economy and cost- effectiveness, AI 

methods have been successfully used to predict 

drug bioactivities, including anticancer, antiviral, 

and antibacterial activities.50–52For instance, 

Stokes et al. designed a directed message passing 

neural network capable of predicting antibacterial 

activity. They first built a molecular graph for each 

molecule according to its SMILES and then 

extracted the feature vector from atomic features 

(e.g., number of bonds by each atom and atomic 

number) and bond features (e.g., type of bond and 

stereochemistry).53Using the message passing 

operation several times, the optimized feature 

vector was input into the feedforward neural 

network that produced the antibacterial probability 

of a molecule.53 Drug physicochemical property 

prediction Physicochemical drug properties are 

innate attributes of drugs. Information related to 

physicochemical properties must be known to 

understand and simulate drug action. Among the 

large number of forms of physicochemical 

properties, solubility is significant due to its effect 

on pharmacokinetic properties and formulations 

ofdrugs.54,55 Nonetheless, time-consuming and 

expensive experiment-ation approaches have 

hindered the fast prediction of solubility; as such, 

many efforts have therefore gone into working on 

AI-assisted solubility prediction models. 

Panapitiya et al. evaluated various deep learning 

techniques (i.e., fully connected neural networks, 

RNNs, graph neural networks, and SchNet) and 

molecular representation methods (i.e., molecular 

descriptors, SMILES, molecular graphs, and 3D 

atomic coordinates) for predicting 

solubility.54From the same test data, the authors 

established that the best performance of the fully 

connected neural network for predicting solubility 

was achieved using molecular descriptors. 

Moreover, the authors compared the significance 
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of various features for prediction and concluded 

that 2D molecular descriptors contributed the 

most. 

Figure 3. Application of AI techniques to pharmaceutical analysis 

AI in natural product-inspired drug discovery 

Drug discovery is a method of finding active 

compounds with therapeutic impacts on the target 

diseases. While a high-throughput screening 

method has the capacity to screen thousands of 

varying com-pounds in individual passes, it 

remains time-consuming and expensive.56To 

overcome these issues, AI methods have been 

utilized to virtually all drug discovery facets. The 

uses of AI to natural product-inspired drug 

discovery, including de novo drug design, target 

structure prediction, DTI prediction, and drug-

target binding affinity prediction 

De novo drug design 

De novo drug design is a process of producing new 

drug-like molecules without an initial template. 

While traditional structure-based and ligand-based 

drug design approaches have improved the 

discovery of small-molecule drug candidates, they 

respectively depend on understanding the active 

site of a biological target or pharmacophores of a 

known active binder,57preventing their 

applications to contemporary drug discovery. The 

AI techniques boom has brought new chances to 

de novo drug design and promoted the drug 

discovery process. Over the past few years, many 

deep learning-based models have been proposed 

for de novo drug design, including the 

reinforcement learning-based model 

ReLeaSE,58the encoder- decoder-based 

modelChemVAE,59the GAN-based model 

GraphINVENT,60and the RNN- based model 

MolRNN.61Another important aspect of de novo 

drug design is molecular representation. SMILES, 

fingerprint, molecular graph, and 3D geometry 

have been utilized as input of deep learning 

algorithms. The basic framework of deep learning-

based de novo drug design approaches is depicted 

in the left upper corner of 
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Figure 4. Detailed information about deep learning-based de novodrug design models is provided recent 

reviews. 

Target structure prediction 

The majority of drug targets are proteins with 

significant functions in enzymatic processes, cell 

signaling, and cell-cell transduction. Protein 

functions are defined by structures. Though 

traditional experimental methods, including X-ray 

crystallography, cryogenic electron microscopy, 

and nuclear magnetic resonance spectroscopy, 

have been suggested to find protein structures, 

they remain time-consuming and expensive.63As 

mentioned, experimental methods have only 

deciphered the structures of100,000 distinct 

proteins, which represent a minor fraction of 

known proteins.64Thus, the creation of new 

methods to bridge the gap between the number of 

protein sequences and known protein structures is 

an imperative requirement.65With the accelerated 

increase in computational power and the 

breakthroughs of AI methods, numerous 

computational methods have been suggested for 

protein structure prediction. The schematics of the 

basic schematics of computational protein 

structure prediction models are shown in the right 

top corner of Figure 4. The best-performing 

method is the neural network-based Alpha Fold 

approach developed by DeepMind, and it can 

predict the 3D structure of proteins from their 

amino acid sequences and achieve experimentally 

competitive accuracies. The algorithm and 

architecture description of Alpha Fold is given in 

Senior et al.66The source code of Alpha Fold is 

hosted at https://github.com/deepmind/alphafold. 

DTI prediction 

DTI prediction is the interaction between protein 

targets and chemical compounds in living 

organisms.67 DTI prediction is a crucial process in 

drug discovery. Experimental methods have, 

therefore, been employed to predict DTI, including 

co-immunoprecipitation,68 phage display 

technology,69 and yeast two-hybrid.70 The wet 

laboratory methods are, however, time- 

consuming when employed to predict DTI. In 

recent times, the constantly growing biological 

data have laid the ground for in silico prediction of 

DTI. As such, computational techniques are 
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increasingly being employed in the prediction of 

DTI. These techniques, which were discussed in a 

recent review,71 can be divided into the following 

categories: ligand-based techniques, docking 

simulations, gene ontology-based techniques, text 

mining-based techniques, and network-based 

techniques. Deep learning-based techniques, 

relative to other types of techniques more often 

show improved performance in DTI prediction.72 

The typical flow of the DTI prediction procedure 

based on deep learning is indicated at the lower left 

corner in Figure 4. Compounds and proteins are 

first encoded utilizing their respective features. 

Subsequently, the feature embedding of proteins 

and compounds serve as the inputs of deep 

learning techniques. Corresponding to this 

approach, the models based on deep belief neural 

network,73 CNN,72 and multiple layer 

perceptron74 have been suggested for drug-

protein interaction prediction, significantly 

advancing drug discovery. In real life, most 

diseases don't have clearly defined targets. 

Therefore, discovering drugs for these diseases is 

not feasible using the above methods. Zhu et al. 

recently suggested a deep learning-based efficacy 

drug candidate predicting system (DLEPS) 

capable of picking out drug candidates based on 

the shifts of gene expression profiles instead of 

specific targets.75 Initially, the compounds were 

SMILES encoded and employed as CNN input to 

regress gene expression alterations. Afterwards, 

the compound effectiveness against diseases was 

assessed based on gene signatures defining 

particular diseases and ranked with an approach 

similar to gene set enrichment analysis. DLEPS 

offers new information for the identification of 

new drugs for complicated diseases. 

Drug-target binding affinity prediction 

DTI prediction is, in most instances, considered a 

binary classification problem, but binding affinity 

between drug and target is not considered.67 

Binding affinity indicates the intensity of drug-

target pair interactions, and it is significantly 

informative for drug discovery. Though binding 

affinity can be experimentally measured by 

determining dissociation and inhibition constants, 

the time cost and economic expenses of these 

processes are very high. Hence, computational 

methods for the prediction of binding affinity is 

required. In 2018, Öztürk et al. developed the first 

deep learning model, named DeepDTA, for the 

prediction of binding affinity between drugs and 

their targets.76 DeepDTA employed the drug and 

the target by encoding them using SMILES and 

amino acid letters, respectively, and they were 

utilized as input to CNN. The general framework 

of DeepDTA is presented at the right bottom 

corner of Figure 4. The comparative results 

illustrated that DeepDTA dominated KronRLS77 

and SimBoost78 for drug-target binding affinity 

prediction. Inpired by DeepDTA, a series of deep 

learning-based models has been sequentially 

introduced, including WideDTA76 and 

DeepAffinity,79 that have become effective tools 

in drug discovery 

Advanced uses of AI in drug design 

AI in prediction of drug synergism/antagonism 

Synergism and antagonism are the two types of 

drug combination effects. The former can 

overcome primary and secondary drug resistance, 

and it is useful for the treatment of cancers,80 

AIDS,81 and bacterial infections,82 while the 

latter decreases the efficacy of drugs. With the 

constantly growing number of drugs, their 

potential combinations are astronomical. 

Therefore, experimentally exploring drug 

combination effect is time-consuming and 

expensive. The developments of AI methods have 

rendered them suitable for investigating potential 

drug combinations at reduced cost and with greater 

efficiency. Li et al. In 2015 suggested a Bayesian 
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network model for investigating and examining 

drug combinations.83 Wildenhain et al. in the 

same year developed a random forest-based model 

to predict compound synergism from chemical-

genetic interactions.84 Preuer et al. recently 

suggested DeepSynergy,85 a deep learning-based 

model for anticancer drug synergism. The 

chemical data of drugs and genomic data of 

diseases were the inputs for DeepSynergy, which 

propagated them through the network to the output 

unit. The comparative performance on a publicly 

available dataset of synergy showed that 

DeepSynergy performed better than its 

competitors in predicting drug synergism. The 

web server and source code of DeepSynergy are 

available at 

www.bioinf.jku.at/software/DeepSynergy and 

https://github.com/KristinaPreu er/DeepSynergy, 

respectively. 

AI in nanomedicine design 

Nanotechnology has been used to design 

nanomedicines through the application of 

nanometric- scale materials in the clinical 

environment.86 Nanomedicines are created by 

nanometric-scale materials, and therefore, they 

can cross the barriers to engage with targets in the 

body. Currently, there are some nanomedicines 

that have been approved by the U.S. Food and 

Drug Administration, and they have performed 

better in the treatment of cancers87 and HIV-1 

infection.88 Yet, the absence of quantitative and 

qualitative knowledge of nanomaterial properties 

and biological responses hindered the extensive 

use of nanomedicines. Nanotechnology in 

combination with AI offers new solutions to 

resolve this issue. For instance, Li et al. suggested 

an ANN for nanomedicine composition 

optimization.89 Muñiz Castro et al. created a 

pipeline for formulating nanomaterials through 3D 

printing can forecast the nanomaterial's extrusion 

temperature, filament mechanical properties, and 

dissolution time.90 Besides, the effectiveness of a 

nanomedicine is also influenced by cellular 

uptake. Thus, a prediction model for cellular 

uptake will greatly assist researchers in forecasting 

nanomedicine effectiveness. Based on an ANN, 

Alafeef et al. created a platform for forecasting 

nanoparticle cellular internalization in various cell 

types.91 Other applications of AI in nanomedicine 

design and their principles were compiled in a 

recent exhaustive review.80 

AI in oligonucleotide design 

In addition to drugs based on natural products, 

oligonucleotide therapeutics made up of short 

DNA or RNA strands have emerged as a new class 

of drugs.92 Antisense oligonucleotides (ASO), 

small interfering RNA (siRNA), and CRISPR-Cas 

(clustered regularly interspaced short palindromic 

repeats)-associated protein are the primary 

oligonucleotide therapeutics systems that make 

possible the specific treatment of wide-ranging 

diseases. Because experimental designing these 

oligonucleotides will be very costly, the AI 

methodologies have also been employed to assist 

researchers to identify and design the 

oligonucleotide-based drugs. For instance, Chiba 

et al. suggested a machine learning-based model, 

eSkip-Finder, to find effective exon skipping 

ASOs.93 Dar et al. designed SMEpred to predict 

the efficacy of siRNAs.94 

Molecular Docking 

Molecular docking is a key drug discovery tool 

used to assist scientists in knowing how small 

molecules (such as drugs) bind to biological 

targets (most often proteins). Classical molecular 

docking had the researcher using trial-and-error 

experimental techniques, heavily dependent on 

scientific expertise and laboratory work. 

Nevertheless, with the arrival of artificial 

intelligence (AI), molecular docking has become 
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faster, more accurate, and less costly. This paper 

discusses how AI and molecular docking intersect, 

their advantages and drawbacks, as well as what 

they are contributing to the drug discovery of the 

future. Before diving into AI’s role in molecular 

docking, it’s essential to understand what 

molecular docking entails. In essence, molecular 

docking is a computational method used to predict 

the preferred orientation and binding affinity of a 

ligand (a molecule that binds to a target, such as a 

drug or peptide) when it interacts with a receptor 

(usually a protein). The objective of docking is to 

locate the most energetically favored binding 

mode of the ligand-receptor complex, which is 

important for finding potential drug candidates. 

Classically, molecular docking involves solving 

intricate equations representing the intermolecular 

interactions. The solution returns a researcher a 

ranking of the potential modes of binding using 

computed energy scores. The predictions have the 

capability of guiding experimental studies by 

scheduling the molecules to be tested secondly, 

hence accelerating the process of drug discovery. 

The Application of AI in Molecular Docking 

Artificial intelligence, more specifically machine 

learning (ML) and deep learning (DL), has come 

to assume a revolutionary role in molecular 

docking. This is how: 

1. Enhancing Precision in Predictions 

Conventional molecular docking approaches are 

based on pre-established algorithms and heuristics 

to model molecular interactions. Although these 

models can be useful, they tend to be limited in 

accuracy and computational efficiency. AI 

methods, especially deep learning, have the 

potential to improve the accuracy of docking 

predictions by learning from enormous amounts of 

data, such as the physical and chemical properties 

of molecules and their interactions. For instance, 

AI algorithms can be taught to recognize known 

molecular interactions, so they may predict the 

binding affinity of novel molecules with increased 

accuracy. Machine learning models may learn 

complex patterns in molecular binding, 

challenging traditional approaches, by learning 

from large sets of protein-ligand complexes and 

training models on them. 

2. Speeding Up Drug Screening 

AI can greatly accelerate the process of drug 

discovery, particularly in the initial stages where 

thousands of candidate drugs have to be screened. 

Conventional docking processes may take days or 

weeks to process large datasets, whereas AI-based 

docking is capable of processing these within a 

small fraction of the time. By using high-

throughput screening, AI is able to rapidly forecast 

which compounds are likely to bind well to a target 

protein, shortlisting candidates for further testing. 

The speed-up enables researchers to better 

prioritize drug candidates, saving time and money 

in the hunt for good compounds. In a business 

where time is as important as it is, having the 

capacity to carry out faster screening may be a 

game-saver. 

3. Improving Virtual Screening 

Virtual screening is a computer method for 

selecting potential drug candidates by modeling 

the way they may bind to a target protein. With AI, 

virtual screening becomes much more accurate 

and efficient. Deep learning algorithms can 

examine the three-dimensional shape of proteins 

and ligands with great accuracy and predict 

binding interactions in a manner that conventional 

algorithms frequently cannot. By merging AI with 

virtual screening, scientists can probe more 

extensive libraries of chemicals and find new drug 

candidates that would have otherwise been 

overlooked by traditional means. AI models can 
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even make predictions regarding how slight 

chemical adjustments to a ligand may enhance its 

binding affinity, allowing for rational drug design 

and optimization. 

4. Maximizing Drug-Target Interactions 

One of the most important challenges in drug 

discovery is the design of molecules that bind 

specifically and efficiently to a target protein 

without inducing off-target effects. AI can 

optimize drug-target interactions by gaining 

deeper insights into molecular docking. With 

reinforcement learning and generative models, AI 

can suggest new chemical structures or 

modifications to enhance the binding affinity and 

selectivity of drug candidates. Through the 

integration of AI-optimized optimization, 

scientists can select the best drug candidates 

sooner, improving the chances of clinical trial 

success. AI can also help to create drugs with 

fewer side effects by predicting potential off-target 

interactions, a significant barrier to drug 

development. 

Limitations and Challenges of AI in Molecular 

Docking 

Though full of promise, AI in molecular docking 

is not without limitations: 

1. Data Quality and Availability 

Large amounts of data are needed to train AI 

models effectively. The quality and availability of 

the data in terms of experimentally validated 

protein-ligand complexes are limited. Large- scale 

databases such as the Protein Data Bank (PDB) 

and PubChem are available but may not include all 

the possible interactions or have high-quality data 

for every protein of interest. In addition, AI models 

might have issues with noisy and incomplete data, 

potentially resulting in wrong predictions. 

2. Explainability of AI Models 

Deep learning models, though powerful, are 

sometimes referred to as "black boxes," that is, 

their decision-making process is not necessarily 

transparent. This lack of explainability can 

become a major impediment to their use in drug 

discovery, particularly in an industry where 

knowing the rationale for predictions is essential. 

Techniques such as attempting to make AI models 

explainable are being pursued, but this remains a 

work in progress. 

3. Integration with Current Workflow 

Incorporating AI-based molecular docking into 

current drug discovery pipelines can be 

challenging. Pharmaceutical firms tend to use 

conventional techniques and tools, and embracing 

AI involves heavy infrastructure, computational 

power, and training. But as AI technology matures 

and its advantages become clearer, its 

incorporation into drug discovery pipelines will 

increasingly become seamless. 

Molecular Docking and Structure-Based Drug 

Design Studies 

Molecular docking is a well-established and 

widely used methodology in drug design. A 

substantial number of studies are available in 

which a diverse array of approaches has been 

applied for the discovery of novel bioactive 

molecules. Recent cases involving different 

docking strategies combined with other molecular 

modeling methods are examined next. 

5.1. Discovery of Mycobacterium tuberculosis 

InhA Inhibitors Using SBVS and Pharmacophore 

Modeling 

Trans-enoyl-ACP reductases are NADH-

dependent enzymes involved in fatty acid 

biosynthesis. The enzyme from Mycobacterium 

tuberculosis (InhA) promotes the synthesis of 

long-chain fatty acids, namely mycolic acids, 
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which are an essential component of the bacterial 

cell wall [205]. An important enzyme in 

tuberculosis drug discovery, InhA is the molecular 

target for the tuberculostatic drug isoniazid [206]. 

The compound is a pro-drug that loses its 

hydrazine group as it reacts with the enzyme 

cofactor NADH, forming an isonicotinic-acyl- 

NADH complex that inhibits the catalytic activity 

of InhA (Figure 6). 

Figure 5. (A) Structure of the tuberculostatic drug 

isoniazid; (B) The isonicotinic-acyl moiety 

covalently bound to NADH in the binding site of 

InhA (PDB 1ZID, 2.70 Å). The protein backbone 

is represented as a cartoon. The isonicotinic-acyl 

fragment (carbon in yellow) and NADH (carbon in 

white) are shown as sticks. 

The Future of AI in Molecular Docking 

The future of AI in molecular docking is full of 

interesting potential. With increasingly advanced 

AI models and increasingly high-quality data, 

molecular docking will be increasingly accurate, 

efficient, and a part of the drug discovery process. 

Even the integration of AI with other new 

technologies, such as quantum computing, might 

further speed the drug discovery process and allow 

for more personalized, effective treatments. In 

summary, AI is more than a tool; it is a 

revolutionary driver in the pharmaceutical sector. 

By optimizing molecular docking, AI is assisting 

scientists to find drug candidates quicker, better 

optimize interactions, and save money and time 

during the drug discovery process. With further 

development, the technology is poised to change 

the future of drug discovery, bringing new 

treatments to market quicker and enhancing world 

healthcare outcomes. 
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