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Drug-drug interactions (DDIs) threaten patient safety and treatment results, especially 

with multiple drugs. Traditional methods like clinical trials and rule-based systems have 

limits in speed and scale. To improve detection, many now use artificial intelligence 

(AI) and machine learning (ML). These methods rely on a variety of data sources, 

including drug databases, patient records, and medical literature. They face challenges 

such as data quality, standardization, and missing information. Different AI models are 

used, like similarity-based systems, network models, graph neural networks, and deep 

learning approaches. Natural language processing (NLP) helps gather information from 

unstructured texts like clinical notes. AI tools are already used in hospitals and safety 

monitoring, guiding doctors and spotting rare interactions. Still, issues like model 

interpretation, data gaps, and fitting into clinical workflows remain. Future efforts focus 

on making AI more understandable, handling multiple data types, protecting privacy, 

and customizing medicine. Overall, AI is changing how DDIs are found and managed, 

helping improve drug safety and personalized treatment. 
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INTRODUCTION 

Background 

Drug-drug interactions (DDI) occurs when one 

medicine changes how another works. This can 

make drugs less effective or cause new side 

effects. Some interactions are predictable, while 

others are not. They can be helpful, like when two 

medicines work well together, or harmful, causing 

problems. These interactions are important to  

 

watch out for to keep treatments safe and effective. 

These interactions can be classified into two main 

types namely, PK & PD (Figure 1)  

https://www.ijpsjournal.com/
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Figure 1: Classification of Drug-drug Interactions 

Pharmacokinetic Interactions: 

I. Absorption: Drug interactions can 

change how well a drug works. 

Sometimes, one drug affects how 

another drug is absorbed in the stomach 

or intestines E.g., antacids reducing 

absorption of some antibiotics. 

II. Distribution: Drugs can compete for 

binding sites on plasma proteins, 

affecting the distribution of each other.  

III. Metabolism: Drugs can induce or 

inhibit the enzymes responsible for 

metabolizing other drugs. E.g., 

rifampin speeds up metabolism of 

warfarin, reducing its effect. 

IV. Excretion: The removal of drugs from 

the body, mainly via the kidneys. 

E.g. probenecid inhibits the renal 

excretion of penicillin. 

Pharmacodynamic Interactions:  

I. Additive Effects: When two drugs 

with similar pharmacological effects 

are taken together, their combined 

effect can be additive. For example, 

taking two antihypertensive drugs can 

lead to a greater reduction in blood 

pressure.  

II. Synergistic Effects: When the 

combined effect of two drugs is greater 

than the sum of their individual effects. 

For example, the combination of 

alcohol and benzodiazepines can lead 

to profound sedation. 

III. Antagonistic Effects: When one drug 

reduces or counteracts the effect of 

another drug. For example, naloxone 

antagonizes the effects of opioids. 

Drug interactions cause many bad reactions, 

hospital stays, and higher healthcare costs. About 

20-30% of bad drug events are due to these 

interactions. Serious issues like toxicity or failure 

of treatment can happen. Drugs like blood 

thinners, heart medicines, antibiotics, and mental 

health drugs are most likely to cause problems. 

Checking for interactions by hand relies on books 

or doctor knowledge, which can lead to mistakes. 

Computer tools that use fixed rules often show too 

many false alerts, making doctors ignore warnings. 

Static lists like Micromedex or Lexicomp may 

miss new interactions because they are not updated 

often enough. 

Traditional Approaches to Drug-Drug 

Interaction (DDI) Prediction 

 Rule-Based Systems 

Rule-based systems represent one of the earliest 

computational approaches utilized for drug-drug 

interaction (DDI) prediction. These systems are 

predicated on expert-defined rules that are based 

on pharmacokinetic (PK) and pharmacodynamic 

(PD) knowledge. Typically, they employ known 

drug properties, such as enzyme metabolism 

pathways (e.g., cytochrome P450), receptor 

binding affinities, and previously observed 

adverse effects, to identify potentially harmful 

interactions (Tatonetti et al., 2012). For instance, a 
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rule may specify that if two drugs are substrates of 

the same enzyme, such as CYP3A4, their co-

administration could lead to competitive 

inhibition, resulting in elevated plasma levels of 

one or both drugs. While rule-based systems are 

effective in identifying well-established 

interactions, they are inherently constrained by 

their dependence on existing knowledge bases. 

This limitation restricts their capacity to predict 

novel or complex interactions, particularly in 

polypharmacy scenarios or with drugs that have 

poorly understood mechanisms of action (Rasool 

et al., 2018). 

 Clinical trials and Post-Marketing 

Surveillance 

Clinical trials test how safe and effective new 

drugs are, and sometimes they check for drug 

interactions. But early trials usually include only a 

small, similar group of people and are done in 

controlled settings. This makes it hard to see how 

drugs work in the real world with different 

patients. Ethical rules can also limit testing risky 

drug combos. So, trials might miss rare, long-term, 

or more complex interactions. After a drug is sold, 

the FDA relies on reports from doctors and 

patients to spot problems. These reports can find 

issues missed in trials but often have gaps. They 

may be incomplete or hard to link directly to the 

drug. So, post-marketing checks are useful but not 

perfect. 

 Limitations of Traditional Methods 

Traditional methods for finding drug interactions 

are useful but have clear limits. Rule-based 

systems can't learn new interactions or adapt 

easily. Clinical trials are often too small, too slow, 

or too controlled to show all real-world issues. 

Watching drugs after they hit the market is helpful 

but takes time and can be biased. Because of these 

gaps, scientists are looking at artificial intelligence 

and machine learning. These new tools can analyse 

lots of data quickly, find hidden patterns, and 

predict possible interactions better than older 

methods. They offer more flexible and faster ways 

to detect drug-drug interactions, making medicine 

safer for everyone. 

Enter AI: A New Paradigm 

AI is changing how we predict drug-drug 

interactions. Traditional methods struggle with the 

large and varied data now available. AI handles 

complex information like drug structures, health 

records, side effects, and scientific papers. It finds 

hidden patterns better than old rule-based systems. 

AI models can analyze thousands of drug pairs 

quickly and can predict not just if drugs might 

interact, but how and how strongly. They can also 

use natural language processing to pull new 

knowledge from text sources and use relationships 

between drugs and proteins to see the bigger 

picture. AI can factor in individual patient details 

like age and genetics, making predictions more 

personal. It can simulate virtual patients to test 

drug combos first, saving time and money. 

Overall, AI helps catch problems early and finds 

new insights that can lead to safer, better 

treatments. 

AI Techniques in Drug Interaction Prediction  

 Machine Learning Approaches 

Drug–drug interactions (DDIs) pose a significant 

risk in clinical settings, especially given the 

growing number of patients on multiple 

medications. Traditional methods for DDI 

detection, such as clinical trials and in vitro/in vivo 

testing, are time-consuming, costly, and not 

scalable. To address these limitations, machine 

learning (ML) techniques have been widely 
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adopted for both identifying known DDIs and 

predicting unknown interactions. This review 

outlines the primary datasets, methodologies, and 

challenges involved in ML-based DDI prediction, 

aiming to guide further development in this critical 

area of pharmacology. 

 Support Vector Machines (SVMs) 

Support Vector Machines (SVMs) are supervised 

models used for classification, including drug-

drug interaction (DDI) prediction. They work well 

with high-dimensional data and handle both 

simple and complex relationships. SVMs classify 

drug pairs as interacting or not, using features like 

structural similarity, side effects, gene expression, 

and protein data. They find a boundary that 

separates classes with the widest margin, which 

helps prevent overfitting on small datasets. By 

using kernel methods like RBF, SVMs can also 

learn non-linear patterns, making them effective 

for complex DDI tasks. 

 Random Forests                                                                                                                                                         

Random Forests are models that build many 

decision trees to make predictions. They are 

popular in drug interaction work because they 

handle different types of data well and don’t 

overfit easily. In drug-drug interaction prediction, 

they use info like drug structure, target similarity, 

and side effects. Each tree votes on whether two 

drugs might interact. The final answer is based on 

the most votes. Random Forests also tell us which 

features matter most. They work well even with 

noisy or incomplete data. They can find complex 

patterns without needing lots of tuning. 

 Gradient Boosting Machines (XGBoost, 

LightGBM) 

Gradient Boosting Machines, like XGBoost and 

LightGBM, are strong models used for predicting 

drug-drug interactions (DDI). Unlike Random 

Forests, they build trees one after the other, fixing 

errors from previous trees, which helps improve 

accuracy. XGBoost is popular because it's fast, 

uses regularization, and works well with structured 

data. It is often used to analyze side effects, 

medication patterns, and molecular similarities. 

LightGBM is made by Microsoft and focuses on 

speed and saving memory. It's good for large 

datasets and can handle millions of drug pairs. 

Both models can use different goals, deal with 

missing data, and tell which factors matter most. 

Their success depends on tuning their settings and 

balancing the data, since most drug pairs don't 

interact. 

 DEEP LEARNING MACHINE 

 Artificial neural network (ANN) 

Artificial neural networks (ANNs) are algorithms 

that find hidden patterns in data. They use many 

connected neurons to solve both simple and 

complex problems. Studies have used ANNs to 

predict drug-drug interactions (DDIs). Some 

models use two layers with different types of data, 

like similarity scores from various sources. Others 

use feed-forward networks with ReLU and 

sigmoid functions to process information. Some 

researchers also apply ANNs to graphs, where 

drugs are represented as nodes. They often 

combine ANNs with classifiers like XGBoost to 

determine if two drugs interact. These models help 

to improve the prediction of potential DDIs based 

on different data formats. 

 Convolutional neural network (CNN) 

CNN is a type of neural network inspired by how 

animal visual parts work. It is good at handling 
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grid-like data, such as images. The main goal of 

CNNs is to make data easier to process while 

keeping their ability to make accurate predictions. 

They do this with layers called convolution and 

pooling, which find specific features in small areas 

of the data. CNNs usually have three types of 

layers: convolution, pooling, and fully connected 

layers. The choice of activation function depends 

on the task. Sigmoid is often used for yes/no 

decisions, while softmax helps with multiple 

options. Several versions of CNNs have been 

created for predicting drug interactions, using 

different setups to improve accuracy. 

 Recurrent Neural Networks (RNNs) 

Recurrent Neural Networks (RNNs) are a type of 

artificial brain that handles sequences of data. 

They can remember what came before and see how 

things are connected over time. This helps them 

spot patterns in how medicines are given to 

patients, especially when doses change or drugs 

are taken at different times. RNNs can learn how 

these patterns might cause side effects or 

interactions later. Some special versions, like 

LSTM or GRU, are better at keeping track of long-

term info. They can also include details like dose 

size, how drugs are given, patient info, and lab 

results to improve accuracy. These tools help 

doctors understand how medicines work together 

over time, catching interactions that happen days 

or weeks later. 

 Transformers and Attention Mechanisms 

Transformers changed how computers understand 

language. They use self-attention to consider all 

parts of a sentence at once. This helps them find 

relationships between words, even if they are far 

apart. The model was first shared in the paper 

“Attention is All You Need” in 2017. Since then, 

it has been used for medical and chemical texts. 

This helps find important drug information from 

unorganized writing. For predicting drug 

interactions, much useful info is in research 

papers, guidelines, drug labels, and reports. Older 

methods often missed details or misunderstood the 

context. Transformers are good at understanding 

the meaning behind words, making them better at 

detecting drug interactions hidden in text. 

Language Models in Biomedical and Chemical 

Domains 

Several transformer models have been pre-trained 

and fine-tuned specifically for biomedical and 

pharmacological text mining tasks: 

BioBERT: -BioBERT is a language model for 

biomedical texts, built from BERT and trained on 

medical papers like PubMed abstracts. It improves 

tasks like finding medical names, understanding 

drug-disease relationships, and answering 

questions for drug interaction extraction. 

BioBERT identifies sentences showing drug 

effects, like "Drug A inhibits the metabolism of 

Drug B," and determines the interaction type. This 

helps understand drug interactions better. 

DrugBERT: -DrugBERT is fine-tuned for drug-

related tasks, including DDI extraction. Trained on 

annotated drug datasets, it excels at identifying 

drug mentions and relationships in medical texts. 

DrugBERT outperforms general models at 

handling pharmaceutical terminology. 

ChemBERTa: ChemBERTa processes SMILES 

strings for chemical representation. It learns 

chemical features from molecular text to predict 

properties like toxicity and interactions. When 

combined with textual DDI extraction, it creates 

effective multi-modal DDI prediction systems. 

 Natural Language Processing (NLP)  
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Natural Language Processing (NLP) is crucial for 

predicting drug-drug interactions (DDIs) in 

biomedical AI. It processes unstructured texts like 

research papers and clinical notes, extracting key 

details into organized data to identify potential 

DDIs. NLP uses Named Entity Recognition (NER) 

to identify drug names and BioBERT models to 

understand context for interaction detection. 

Clinical notes provide real-world data, analyzed 

using ClinicalBERT. Tools like MetaMap and 

spaCy help identify drug mentions, working with 

knowledge graphs that map interactions. As 

technology advances, NLP continues improving 

drug safety through better detection of complex 

interactions. 

Data Sources and Resources  

The efficacy of artificial intelligence (AI) in drug-

drug interaction (DDI) prediction is heavily 

contingent on the quality, variety, and 

comprehensiveness of the underlying data. A 

diverse range of data sources—spanning 

structured drug databases, clinical records, 

biomedical literature, and specialized DDI 

datasets—contribute to building robust predictive 

models. Each type of resource provides unique 

insights, from chemical structures and 

pharmacological mechanisms to real-world patient 

outcomes and scientific evidence. However, the 

heterogeneity and imperfections of these data 

sources present several preprocessing challenges 

that must be addressed to ensure model reliability. 

This section explores the key data resources used 

in AI-based DDI prediction, including drug 

databases, clinical data repositories, literature 

corpora, DDI-specific datasets, and the associated 

challenges in data preprocessing. 

1. Drug Databases 

Structured drug databases provide extensive 

information on drug properties, targets, and 

interactions. Key databases include DrugBank, 

PubChem, and ChEMBL. 

DrugBank combines data on drugs, including 

chemicals, mechanisms, and targets. It contains 

information on FDA-approved drugs, biologics, 

supplements, and experimental medicines, along 

with reviewed drug interaction data from labels 

and trials. This makes it valuable for machine 

learning tools and knowledge graphs. 

PubChem, by NCBI, is a public repository of 

chemical molecules and biological activities, 

providing compound structures and bioassay 

results. While not DDI-focused, it enables 

molecular-level analysis for DDI modeling 

through similarity-based inference. 

ChEMBL, maintained by European 

Bioinformatics Institute, contains bioactive 

molecules with drug-like properties, providing 

binding, functional, and ADMET data. Its 

pharmacodynamic and pharmacokinetic profiles 

help train deep learning models for drug 

interaction understanding. 

These databases provide structured features for 

machine learning and deep learning models in DDI 

prediction. 

2. Clinical Data Sources 

Clinical data provides insight into drug behavior 

across patient populations through EHRs, adverse 

event systems, and intensive care databases. 

EHRs contain patient data including medication 

histories, diagnoses, and laboratory results. They 

help discover rare or population-specific DDIs and 

provide temporal information for studying 

sequential drug interactions. However, EHRs 

often contain inconsistencies requiring NLP 
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techniques. FAERS collects adverse drug event 

reports from healthcare professionals, patients, 

and manufacturers. Mining FAERS reveals post-

marketing DDI signals for validation. 

MIMIC-III/IV comprises de-identified ICU 

patient data, including medications, vital signs, 

and clinical notes. It's used for DDI studies in 

critically ill patients and developing clinical AI 

tools. Integration of these clinical sources enables 

building context-aware models for patient-specific 

DDI factors. 

3. Biomedical Literature 

Scientific literature serves as a rich, unstructured 

resource containing DDI-related evidence from 

clinical trials, case reports, and pharmacological 

studies. PubMed and Medline are the two primary 

repositories used in this context. 

 PubMed, managed by the National Library of 

Medicine, indexes over 35 million citations for 

biomedical articles. Many DDIs are first 

reported in the literature, making PubMed a 

crucial resource for mining novel or emerging 

interactions. Researchers use NLP techniques 

such as named entity recognition (NER) and 

relation extraction to automate the 

identification of DDIs from abstracts and full 

texts. 

 Medline is the primary subset of PubMed, 

curated with controlled vocabulary indexing 

(MeSH terms). It facilitates more precise 

querying and semantic search capabilities. 

Literature-based data can be used to 

complement structured datasets and validate 

model outputs through cross-referencing with 

peer-reviewed findings. 

Biomedical literature mining is essential for 

evidence-based AI models, enabling them to keep 

pace with the fast-evolving pharmacological 

knowledge landscape. 

4. DDI-Specific Datasets 

Specialized datasets focused on DDIs are critical 

for training and evaluating AI models. These 

datasets typically include labeled examples of 

interacting and non-interacting drug pairs, often 

with detailed annotations. 

 TWOSIDES is a large-scale dataset compiled 

from adverse event co-reporting in FAERS. It 

includes over 1,300 drug pairs and 1,300 side 

effects, facilitating the prediction of 

interaction-induced phenotypes. TWOSIDES 

is often used for evaluating models based on 

statistical inference, embeddings, and deep 

learning. 

 BioSNAP (Stanford Biomedical Network 

Analysis Project) provides curated biomedical 

interaction networks, including drug-drug 

interaction graphs. It includes both positive 

and negative samples and is commonly used to 

benchmark graph neural networks (GNNs) and 

link prediction algorithms. 

 SIDER (Side Effect Resource) contains 

information on marketed medicines and their 

recorded adverse effects. While not strictly a 

DDI dataset, SIDER can be combined with 

DDI corpora to understand the phenotypic 

consequences of interactions and improve 

model interpretability. 

These datasets provide standardized benchmarks 

and allow the application of advanced AI 

techniques such as graph learning, multi-modal 

fusion, and ensemble modeling. 
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5. Data Preprocessing and Challenges 

Despite abundant data, preprocessing remains a 

major bottleneck in developing reliable DDI 

prediction models. Key challenges include: 

Missing Data: Clinical sources often contain 

incomplete records. Imputation techniques or 

models that handle missing values are needed. 

Data Heterogeneity: Diverse formats from 

chemical structures to clinical notes require data 

integration pipelines. Standardization through 

ontologies enables harmonization. 

Noise and Redundancy: FAERS and EHR 

sources can create spurious associations. Filtering, 

de-duplication, and noise-tolerant models are 

required. 

Class Imbalance: DDI datasets have more 

negative than positive instances. SMOTE, cost-

sensitive learning, and focal loss address this issue. 

Annotation Inconsistency: Varying definitions in 

literature impact model generalization. Manual 

curation and dataset merging strategies help 

mitigate this. 

Effective preprocessing is foundational to the 

accuracy and clinical relevance of DDI prediction 

systems. 

Case Studies and Real-world Applications 

The real-world integration of Artificial 

Intelligence (AI) in drug-drug interaction (DDI) 

prediction has significantly transformed 

pharmacology, enabling data-driven decisions, 

real-time alerts, and enhanced patient safety. This 

section provides a comprehensive examination of 

five landmark implementations of AI in DDI 

prediction and pharmacovigilance: DeepDDI, 

Decagon, transformer-based models for literature 

mining, Clinical Decision Support Systems 

(CDSS), and pharmacovigilance platforms such as 

IBM Watson and MedAware. These examples 

highlight the evolution of AI from theoretical 

frameworks to practical tools in healthcare. 

 DeepDDI: Leveraging Deep Learning on 

Drug Structural Information 

DeepDDI is a deep learning tool that predicts how 

drugs might interact with each other. It analyzes 

the chemical structures of drugs using SMILES 

notation. The model has two main parts: one learns 

a math-based representation of each drug and the 

other uses these representations to guess the type 

of interaction. It can identify 86 different 

interaction types, like helpful effects or harmful 

reactions. DeepDDI performs better than older 

models and gives results that are easy to 

understand. This helps doctors and researchers 

make better decisions about drugs and safety. 

 Decagon: Graph Convolutional Networks 

for Multi-relational DDI Prediction 

Decagon is a new method that uses graph 

convolutional networks to study drug interactions 

and side effects. Instead of looking at each drug 

pair alone, it creates a network of drugs and 

proteins. The network includes different types of 

links for interactions like binding or side effects. 

Decagon’s layers gather information from 

connected nodes to learn detailed features. It 

worked with data from over 900 drugs and nearly 

1,000 side effects. The model predicted new side 

effects with high accuracy, many of which were 

later confirmed. This approach shows how 

combining data in a network can better understand 

complex drug interactions. 

 Transformer-based Models for Literature 

Mining 
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The rise of biomedical papers offers both chances 

and difficulties for predicting drug-drug 

interactions (DDIs). Extracting useful details from 

lots of unstructured text needs advanced natural 

language processing (NLP) tools. Transformer 

models like BERT and its versions, BioBERT and 

SciBERT, help with literature mining. These 

models are trained on large texts and fine-tuned for 

tasks such as recognizing drugs and finding 

interactions. They can identify drug names, 

categorize interaction types, and determine 

causality from scientific articles. Models trained 

on DDI data from sources like PubMed can 

automatically spot and classify interactions. They 

can link this information to standard systems like 

UMLS or MeSH to build structured databases. 

Compared to older methods, transformer models 

are more precise and find more interactions. They 

are now vital for updating DDI info quickly and 

learning from new findings in the field. 

 Integration into Clinical Decision Support 

Systems (CDSS) 

AI tools that predict drug interactions are used in 

Clinical Decision Support Systems (CDSS) to help 

doctors make better choices. These systems 

analyze patient data, such as medications and 

health info, to spot problems and send alerts or 

advice in real time. This reduces side effects and 

helps doctors pick the right medicines. AI makes 

these alerts more accurate by filtering out 

irrelevant ones, lowering alert fatigue. Machine 

learning models trained on patient records find 

patterns of high-risk interactions and consider 

patient details like age and health conditions. 

Some systems use reinforcement learning to 

improve alerts based on doctor feedback, making 

them more user-friendly over time. Real-world use 

of these AI-enhanced systems shows they improve 

patient results, lower adverse drug events, and help 

follow clinical rules. They work especially well in 

intensive care units, where patients often take 

many drugs and quick action is vital. 

 AI in Pharmacovigilance Platforms: IBM 

Watson and MedAware 

Pharmacovigilance—monitoring adverse effects 

of pharmaceutical products—has been enhanced 

by AI platforms IBM Watson for Drug Safety and 

MedAware. 

IBM Watson uses natural language processing to 

extract safety signals from literature and clinical 

trials. It employs machine learning to identify 

adverse drug reactions and DDIs, supporting 

regulatory reporting and surveillance. 

MedAware monitors EHRs using anomaly 

detection algorithms to flag prescription errors and 

DDIs in real time, delivering alerts for significant 

prescribing pattern deviations. 

Both platforms demonstrate AI's power in 

detecting rare interactions, enhancing drug safety 

and compliance. Their deployment shows growing 

trust in AI within healthcare. 

Challenges and Limitations 

Despite the remarkable progress and widespread 

application of Artificial Intelligence (AI) in drug-

drug interaction (DDI) prediction, several 

challenges and limitations continue to hinder its 

full potential and seamless integration into clinical 

practice. This section critically examines key 

barriers that include data quality and availability, 

the interpretability of AI models, generalization to 

unseen drugs, regulatory and ethical concerns, and 

difficulties in integrating AI systems with clinical 

workflows. 

 Data Quality and Availability 
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AI models for DDI prediction rely on data from 

EHRs, biomedical literature, reporting systems, 

and drug databases. However, these data sources 

vary significantly in quality and completeness. 

Datasets often contain missing entries, 

inconsistent nomenclature, and lack 

standardization across formats. This heterogeneity 

affects data integration and prediction accuracy. 

Clinical data, despite its value, remains largely 

inaccessible due to privacy regulations and 

proprietary constraints. Data imbalance presents 

another limitation, with known DDIs being 

overrepresented compared to non-interacting drug 

pairs. Rare or new drugs often lack sufficient 

historical data for training sets. Solutions require 

developing standardized, open-access DDI 

datasets and improved data augmentation 

techniques. 

 Interpretability of AI Models 

AI models, especially deep learning ones, often 

work as "black boxes." They give predictions but 

don’t explain how they arrived at them. This is a 

problem in healthcare, where understanding 

results is key for trust. For example, models like 

DeepDDI and Decagon can predict harmful drug 

combos but don’t show why. Doctors may hesitate 

to act without knowing the reason behind a 

warning. People are trying ways to make these 

models more open, like using attention tools or 

methods like SHAP or LIME. Some are building 

models that are easier to understand on their own. 

But these methods often make the models less 

accurate or slow down their work. Many agree that 

medical AI should do both: be accurate and easy 

to explain. Achieving both goals is a tough 

challenge for research and real-world use. 

 Generalization to Unseen Drugs 

Current AI models struggle to predict drug 

interactions for new drugs that weren’t in the 

training data. Since new drugs keep coming to the 

market, it’s hard for these models to guess how 

they will interact, especially if they are very 

different from known drugs. Deep learning models 

depend on patterns in their training data, so they 

often can’t handle unfamiliar cases well. 

Techniques like transfer learning and few-shot 

learning try to help by using what they already 

know about existing drugs to guess for new ones. 

These methods work best when the new drugs are 

similar to old ones. To do better, models need to 

keep learning as new data comes in. This means 

they must be updated regularly without losing the 

knowledge they already have. However, making 

these systems work this way is still a challenge. 

 Regulatory and Ethical Considerations 

AI in healthcare must follow strict rules about data 

privacy, safety, and ethics. When predicting drug 

interactions, these rules cover patient consent, 

fairness, and responsibility. Agencies like the FDA 

and EMA are starting to give guidance on AI in 

medical devices, but clear rules for testing these AI 

tools are still rare. This makes it harder to use new 

models quickly. Ethical issues also come up. If AI 

learns from biased data, it can give unfair or wrong 

results, especially for some groups of people. If an 

AI suggests a bad drug combo, it’s unclear who is 

responsible. Is it the maker, the doctor, or the 

hospital? To fix these issues, developers should 

check for fairness and explain how their AI works. 

Regulators need to keep updating policies to keep 

people safe without stopping innovation. 

 Integration with Clinical Workflows 

Advanced AI models must seamlessly integrate 

into clinical workflows to be valuable, as 

clinicians already face significant administrative 
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burdens. A key challenge is AI system 

interoperability with health IT infrastructure, 

particularly EHRs. Data silos and incompatible 

formats hinder real-time access to information 

needed for AI predictions. Many facilities also 

lack resources to implement AI solutions. 

Clinicians must be trained to understand and use 

AI-generated outputs, requiring both technical 

training and cultural acceptance of AI as a 

collaborative tool. AI tools must prioritize 

usability and interoperability, with insights 

embedded in clinical dashboards and actionable 

recommendations to foster adoption. 

Future Directions 

AI is making great strides in predicting drug-drug 

interactions. In the future, we will see more use of 

explainable AI, which helps us understand how 

decisions are made. Combining data from different 

sources—called multimodal learning—can 

improve predictions. Privacy will be a big focus, 

with models that share information securely 

without exposing sensitive data. Predictions will 

connect more closely with personalized medicine, 

helping tailor treatments to individuals. Open 

science and collaboration platforms will grow, 

making data and tools more accessible. All these 

steps will change how we predict, understand, and 

use drug interaction info in clinics and research. 

Explainable AI (XAI) for DDI Prediction 

Explainable AI (XAI) is becoming important in 

healthcare, especially for predicting drug 

interactions. Deep learning models are often like 

black boxes, making it hard for doctors and 

regulators to see how they work. XAI tools such as 

SHAP, LIME, and attention visualization help 

show which details influence the predictions. 

These details can include drug structures, 

interaction pathways, or patient info. Using XAI 

builds trust with doctors and helps developers 

make better systems. As rules for AI get stricter, 

XAI will be key to making drug predictions safe 

and clear for everyday use. 

Multimodal Learning: Integrating Genomics, 

EHR, and Chemical Data 

Traditional drug interaction models use only one 

type of data, like chemical info or study results. 

But drugs act in complex ways influenced by 

genetics, body functions, and environment. 

Multimodal learning combines different data types 

such as genetic info, health records, chemical 

structures, and side effect reports. This helps 

models understand drug interactions better, 

especially those affecting specific genetic groups. 

Recent studies show that neural network models 

like transformers and graph neural networks work 

better with multiple data types. They can predict 

more accurately but face challenges like mixing 

different data, missing info, and smaller datasets. 

Despite this, multimodal learning has strong 

potential to improve drug interaction predictions. 

Federated Learning and Privacy-Preserving 

Models 

Data privacy is a big challenge when using 

sensitive medical data for AI research. Federated 

learning helps solve this by training models across 

many hospitals or institutions without sharing raw 

data. Each place trains a local model and sends 

only the results, like model updates, to a central 

server. This keeps patient info safe and respects 

rules like HIPAA and GDPR. It allows different 

groups, like hospitals and drug companies, to share 

data in a way that improves predictions for drug 

interactions and other health issues. Techniques 

like privacy filters make this process even safer. 

While federated learning is still new in healthcare, 

early projects show it works well for tracking drug 
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safety and spotting problems without risking 

privacy. This approach opens up more 

opportunities for safer, better AI in medicine. 

Integration with Personalized Medicine 

Personalized medicine focuses on creating 

treatments that fit each person based on their 

unique traits like genes, lifestyle, and 

environment. Combining drug interaction (DDI) 

prediction with personalized medicine is a natural 

and important step forward. AI models can use 

specific data from a person's genes, body 

chemistry, and medical history to predict drug 

interactions that are unique to them, not just 

general ones. For example, some people process 

drugs differently because of enzyme differences, 

which can cause interactions that standard models 

might miss. Personalized DDI prediction can make 

taking medicine safer, especially for older people 

with many health issues and medications. Systems 

that use personalized AI predictions can change 

drug plans as patient data changes, making 

treatments more effective and less harmful. This 

approach fits with trends in precise dosing, using 

genetic information for drug plans, and creating 

personalized treatment plans, offering a more 

active and patient-focused way to care for people. 

Open Science and Collaborative DDI 

Prediction Platforms 

Open science is changing how research is done and 

shared. In DDI prediction, open-source tools, 

public datasets, and teamwork platforms are 

speeding up progress and openness. Projects like 

BioSNAP, TWOSIDES, and OpenFDA give 

researchers easy-to-use datasets for consistent 

results and comparisons. Open-source libraries 

like DeepChem, Hugging Face, and PyTorch 

Geometric help quickly create and share AI 

models. Platforms like ELIXIR, OpenTargets, and 

AI groups support large-scale, reliable DDI 

prediction by promoting shared standards and 

tools. Open science also supports ethical AI by 

allowing model reviews and data transparency. As 

more people from universities, companies, and 

regulators join these efforts, AI-driven DDI 

prediction will get faster, broader, and safer. These 

changes are not just technical but also shift how 

drug interactions are understood and used in 

healthcare. 

CONCLUSION  

AI is changing how we find and predict drug-drug 

interactions (DDIs). Traditional methods can't 

handle today's complex drug use, but AI can 

analyze large amounts of data to spot hidden 

patterns. It uses information from chemical 

properties, patient reports, genetics, and clinical 

notes to predict both known and new interactions. 

Technologies like machine learning and deep 

learning help with these tasks by turning data into 

safety alerts. AI is also helping improve drug 

safety through systems that give doctors 

personalized advice, making treatment safer. But 

there are challenges. Many AI models act as "black 

boxes" and are hard to explain. They also struggle 

with new drugs or rare interactions because of 

limited data. Integrating AI into healthcare 

systems is not easy either. The future looks 

promising, with hopes for better explanations 

(explainable AI), safer data sharing, and 

personalized medicine. AI that combines different 

types of data can give a clearer picture of DDIs. 

Better tools and teamwork are speeding up 

progress. Overall, AI is becoming a key part of 

making drug use safer and more tailored to 

individuals. It still needs work, but it will change 

how we predict, prevent, and handle drug 

interactions for good. 
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