

Review Paper

Development Of Melittin- Based Nanocarriers for Targeted Cancer Therapy

Bhuvana Ezhil Rohini*, Subhalakshmi R., Abishake S., Devadharshini M., Kirankumar R.

Department of Pharmaceutical Chemistry, Tagore College of Pharmacy, Rathinamangalam, Chennai, Tamilnadu, India

ARTICLE INFO

Published: 05 Feb 2026

Keywords:

bee venom, melittin, nanotechnology, targeted delivery, cancer therapy.

DOI:

10.5281/zenodo.18491831

ABSTRACT

Peptides found in bee venom, particularly melittin, have shown promise as natural anticancer medicines. These peptides exert their anticancer effects by compromising cellular membranes, initiating programmed cell death, and influencing the function of the immune system. The clinical use of melittin is limited due to notable toxicity and insufficient molecular stability, even though it holds considerable therapeutic promise. By creating melittin-based nanocarriers including polymeric nanoparticles, liposomes, and nano emulsions, recent developments in nanotechnology have overcome these constraints and made it possible for precise tumour targeting, regulated drug release, and biocompatible delivery. These engineered platforms enhance the therapeutic efficacy of melittin while minimizing systemic toxicity and improving pharmacokinetic behaviour. Further functionalization with tumour-specific ligands and combination with other therapeutic modalities amplifies the effectiveness and overcomes drug resistance. Therefore, bee venom peptide is being transformed into promising tools for targeted cancer therapy through nanotechnology-driven delivery, bridging the gap between conventional methods and state-of-the-art nanomedicine..

INTRODUCTION

One in six deaths globally are caused by cancer, making it a significant global health concern. According to the WHO cancer was the second biggest cause of death globally in 2020, accounting for around 10 million deaths.

Traditional treatments including immunotherapy, radiotherapy, and chemotherapy encounter challenge such non-selective cytotoxicity and drug resistance. Bee venom is one of the natural substances whose strong anti-inflammatory, anti-cancer, and immunomodulatory properties are becoming more well acknowledged [1].

***Corresponding Author:** Bhuvana Ezhil Rohini

Address: Department of Pharmaceutical Chemistry, Tagore College of Pharmacy, Rathinamangalam, Chennai, Tamilnadu, India.

Email : rohiniramesh1987@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

2.OVERVIEW OF BEE VENOM:

Certain animals have evolved to produce harmful substances that serve to protect them from threats as well as assist in capturing prey. [25] Peptides with a broad variety of structures and functions that have chemical and neuropharmacological effects make up these secretions.

Bee venom, also referred to as "apitoxin," consists of a mixture of biologically active compounds produced by bees from their abdominal cavity and inject into victims using a stinger. These components may stimulate the immune system and induce inflammation at the site of contact. [2]

2.1 PHYSICAL PROPERTIES OF BEE VENOM: [3]

Bee venom appears as a clear fluid and typically has a PH between 4.5 and 5.5

Unpleasant taste and odour

The substance does not dissolve in Ammonium sulphate and Ethanol

It readily dissolves in water

3.BIOACTIVE COMPONENTS OF BEE VENOM:

Bees secrete venom from specialized glands located within the abdomen. The physiologically active compounds which are found in venom are Melittin, Apamin, Adolapin, PLA2, Hyaluronidase, α -D glucosidase. The composition also includes peptides that stimulate mast cells and additional non-peptide elements like Histamine, Dopamine, and Norepinephrine. [4] Further components such as Amino acid, sugars like glucose, Fructose and minerals like calcium, Magnesium. [5]

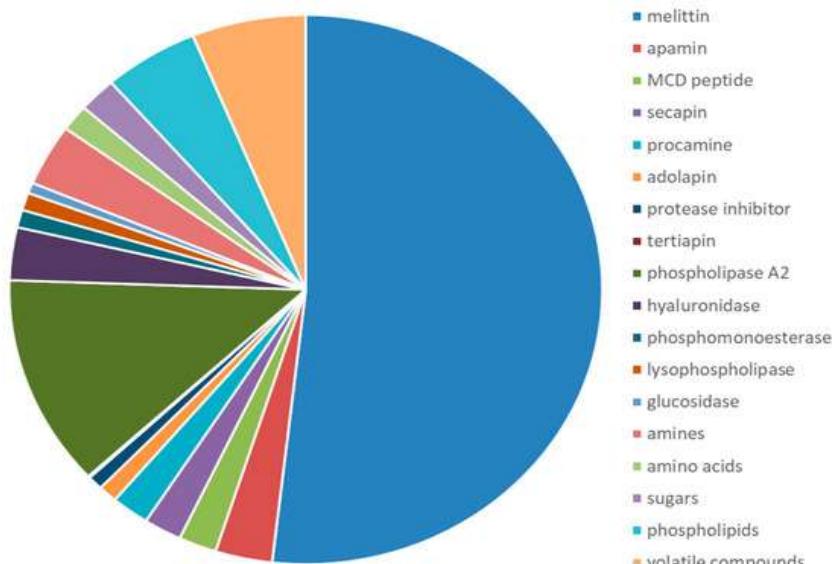
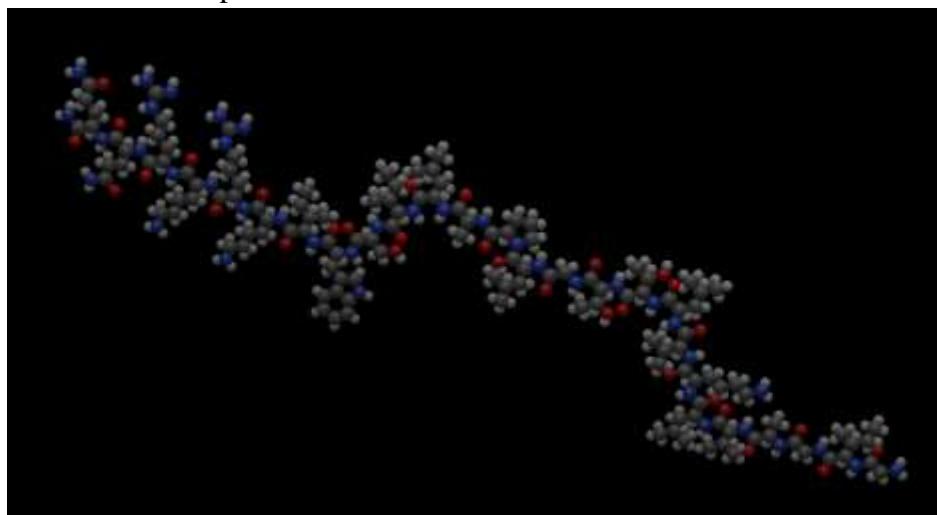


Figure 1. Bioactive components [24]

3.1 MELITTIN:

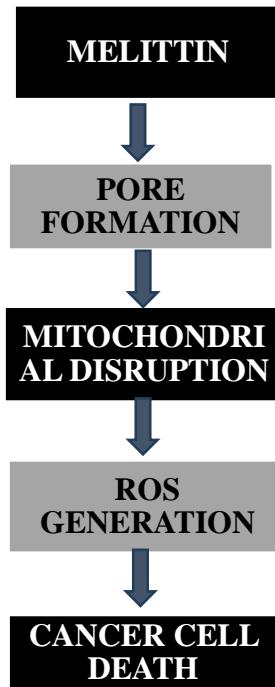

Melittin is the predominant toxic component found in bee venom, representing approximately half of its dried content. [6] This peptide exhibits diverse effects on various physiological and biological processes. [7] Structurally, melittin is a peptide with 26 amino acids possessing both positive

charge and amphipathic properties, and constitutes about 40–50% of the venom's dry weight (BV). [1]. Its amino acid chain is: Glycine–Isoleucine–Glycine–Alanine–Valine–Leucine–Lysine–Valine–Leucine–Threonine–Threonine–Glycine–Leucine–Proline–Alanine–Leucine–Isoleucine–Serine–Tryptophan–Isoleucine–

Lysine–Arginine–Lysine–Arginine–

Glutamine–Glutamin. [6] Melittin regarded as the main biologically active element in bee venom, was initially separated and refined from the substance. Gel filtration, HPLC, and capillary electrophoresis were used to separate and isolate

melittin from BV. UV testing, reverse phase HPLC, and amino acid analysis were used for analysis. Figure (1) depicts melittin's three-dimensional structure. [7]


Figure 2. 3D structure of melittin.

4.MECHANISM OF ACTION:

Melittin's ability to insert itself into cell membranes allows it to form channels or compromise membrane structure, which can ultimately trigger cellular breakdown.

Melittin shows several anticancer mechanisms in cancer models. Through direct cytosis, it damages the membrane of cancer cells and rapidly induce cell death. [1]. The peptide also initiates programmed cell death by increasing mitochondrial membrane permeability,

subsequently producing Reactive oxygen species within the cell. Tumour growth is further suppressed by melittin through its influence on signal transduction pathways crucial for cell viability and replication, including those mediated by MAPK, PI3K/Akt, NF- κ B pathways. In cervical malignancies, indirect effects include downregulating oncogenes such as HPV E6/E7 and immunogenic cell death, as well as reactivating tumour suppressor genes (P53, Rb). [8]

Figure 3. melittin mechanism of action

5.NANOTECHNOLOGY-DELIVERY SYSTEMS:

5.1 RATIONALE FOR NANOFORMULATION:

Systemic usage of melittin is hindered by its haemolytic action and quick degradation. The peptide is protected, directed toward the tumour, and allowed for regulated, localized release when it is encapsulated in nanocarriers. Numerous platforms are made possible by nanotechnology to accomplish this objective. These systems improve tumour targeting, stability, and bioavailability while also aiding in the defeat of drug resistance mechanisms. One of the prospective substitutes for precise targeting and efficient treatment is nanotechnology. [1] [7] [10]

6.TYPES OF NANOCARRIERS FOR BEE VENOM PEPTIDE:

6.1 LIPOSOMES:

BASED FOR

Liposomes are one of the most researched nanocarriers for drug administration, notably for peptides like melittin. They are composed of one or more layers of lipids that surround a central water-filled compartment. They consist of a core compartment filled with water surrounded by one or more layers of lipids. These carriers are especially prized for their capacity to interact with biological systems in a safe manner, their capacity to break down spontaneously, and their adaptability in carrying both fat-soluble and water-soluble substances. The addition of substances such as hyaluronic acid can further strengthen the structure of liposomes, minimize unintended release of melittin, and improve their precision in targeting tumours. [11] Melittin exhibits a lot of biological activity, but its use is restricted by the potential for serious adverse effects. Researchers tried to encapsulate melittin in nanoliposomes to make it more effective and harmless for therapeutic use in order to get over these

challenges. [12] When the nanocarrier gets to a malignant cell, it triggers a biological reaction that causes apitoxin to be released, which ultimately causes the cancerous cell to die. To improve the

patient's prognostics, this new drug delivery concept is a targeted and effective cancer therapy method. [12]

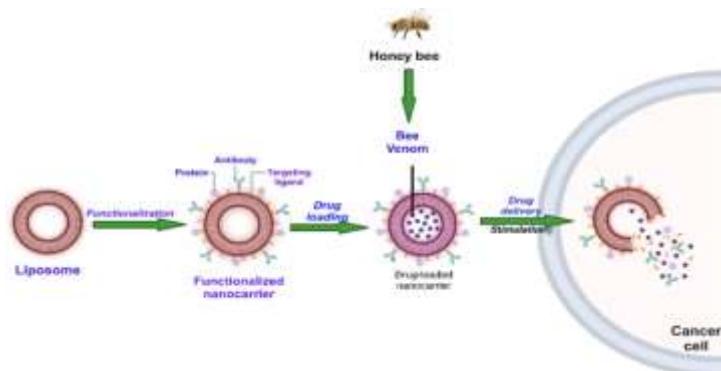


Figure 4. liposomes

6.2 POLYMERIC NANOPARTICLES:

The formulation of melittin-loaded lipid coated polymeric nanoparticles was created to be both biocompatible and stable. It consists of an exterior shell made of polyethylene glycol (PEG) and PEG targeting molecules, a middle layer of lipid

membrane, and an inner core of melittin/poly- γ -glutamic acid nanoparticles. [13] Studies using PLGA carriers loaded with melittin have demonstrated that it offers variable release rates and improved penetration into tumour microenvironments.

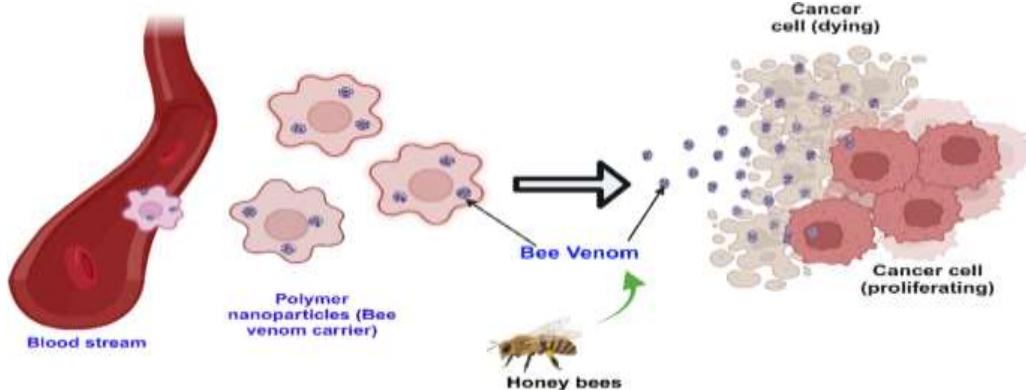


Figure 5. polymeric nanoparticles

6.3 NIOSOMES:

Niosomes are vesicles formed from non-ionic surfactants, capable of efficiently delivering therapeutic agents to cancer cells while reducing unwanted side effects. Challenges such as insufficient protection of active drugs, combined with the demands for stable formulations and extended shelf life, have contributed to slow

progress in developing targeted delivery systems for clinical applications. [14] When used to carry melittin, niosomes are designed to maximize anticancer effectiveness and minimize harmful impacts, such as haemolysis, by circumventing previously observed drawbacks. Studies have shown that melittin encapsulated in niosomes leads to more potent tumour suppression in breast

cancer cell models, with fewer adverse reactions compared to other delivery forms. [15]

6.4 METAL NANOPARTICLES:

Bee venom-conjugated silver nanoparticles (AgNPs) are essential for combination therapy because they increase cytotoxicity and offer antibacterial advantages. By adding plant or biomolecule extract dropwise to a metallic salt solution while stirring until a colour shift indicated production, bee venom nanoparticles were created using green synthesis. Purified nanoparticles were obtained by centrifuging, washing, and drying the material at 45 to 50 degrees Celsius. UV-visible, TEM/SEM, and FTIR were used for characterization in order to verify size, form, stability, and crystallinity. [16]

7.ROUTE OF ADMINISTRATION:

BV ointment, creams, pills, drops, Apis homeopathic formulations, electrophoresis, phonophoresis, and bees physically stinging particular places are some of the methods that bee venom can be delivered. It has multiple disadvantage like pain and inflammation caused by sting, difficulty for maintaining its regular concentration in blood, the need for long-term administrator of a series of stings or injection because of short half-life of melittin and inconvenience to patients[17]. Because of BV's comparatively short plasma half-life and the difficulty in establishing a precise dosage, researchers and practitioners are promoting and developing alternate options, like combining it with polymers or nanoparticles. [5]

8.SAFETY AND TOXICITY PROFILE OF BEE VENOM:

Although bee venom contains toxic compounds, in individuals without allergies it can be administered as a relatively safe therapeutic agent. The amount

of venom necessary to be lethal for an average adult is estimated at nearly 2.8 mg per kilogram, meaning that approximately 1300 bee stings would be required to reach a fatal dose since each bee produces only a small amount of venom. Using purified components from bee venom, such as melittin, offers improved safety and efficacy compared to treatments with whole, crude venom. [18] Strategies that lower the overall toxicity of bee venom, including modifications like incorporating specific amino acids, make it possible to administer higher doses of apitoxin for enhanced therapeutic results. Adjustments such as using dextrorotatory D-amino acids during peptide synthesis can help reduce toxicity

8.1 COUNTERINDICATIONS:

Bee Venom allergy remains the main contraindication for its therapeutic use; allergy testing is recommended before beginning of apitherapy. [19]

Acute and chronic infections

Post vaccination status

Tuberculosis and hepatitis

Malignancy

Young Children under 5 years old

Pregnancy

Diabetes

Renal failure

Hepatic failure

Impaired cardiac functions and respiratory problems.

9.OVERCOMING RESISTANCE AND ENHANCING EFFICACY:

One major obstacle in the treatment of cancer is tumour resistance to conventional therapies. The lethal effects of nano formulated bee venom peptide on tumour cells can be improved by adjusting their release profiles from nanocarriers. Additionally, the peptide can be coupled with

other medicines to overcome resistance mechanisms. [12]

10.THERAPEUTIC APPLICATION:

Bee venom has therapeutic potential in managing and treating various conditions like Inflammatory, Autoimmune, Arthritis, Bursitis, Tendonitis,

Cancer. Bee Venom has various therapeutic or pharmacological properties like [20]

Anti-cancer
Anti-microbial
Anti-inflammatory
Anti-diabetic
Anti-arthritis
Anti-fungal
Radioprotective

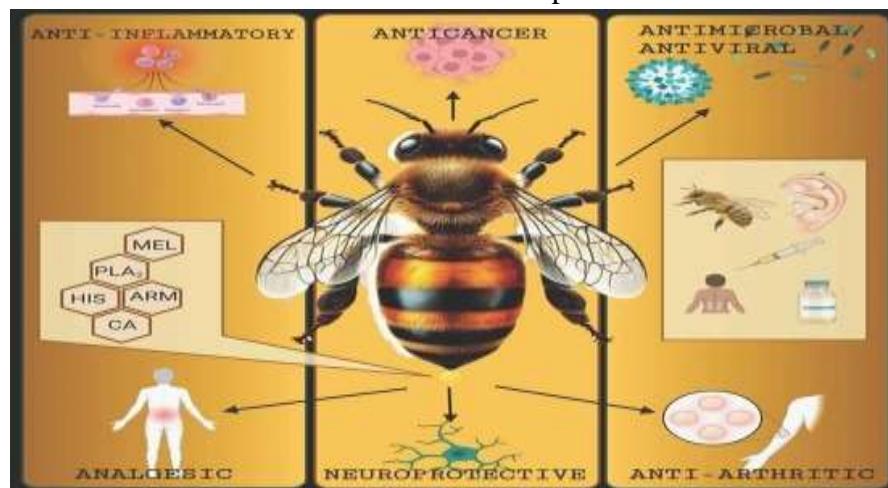


Figure 6. Applications [22]

FUTURE PERSPECTIVES:

AI based nanocarrier design:

Predictive modelling for personalized delivery system.

Combination Therapy:

Integration of BV nano formulation with chemotherapy, radiotherapy or photothermal techniques is expected to amplify anti-cancer efficacy while reducing drug resistance. [22]

Smart Nanoplatforms:

Stimuli-responsive particles releasing peptides under specific tumour triggers.

Synthetic melittin analogues and Recombinant peptides:

These with reduced toxicity and improved stability are being investigated for safer human application. [23]

CONCLUSION:

Bee venom peptides, especially melittin, are among the most promising biomolecules for innovative cancer therapy due to their strong cytolytic and immunomodulatory effects. However, their clinical utility remains limited by haemolytic toxicity, poor stability, and non-specificity toward healthy cells. The development of nanotechnology has made it possible to create advanced delivery methods with enhanced biocompatibility, controlled release, and precise tumour targeting, including polymeric nanoparticles, liposomes, and nano emulsions. Encapsulating melittin with these nanocarriers has notably enhanced its anticancer efficacy while reducing systemic toxicity and improving pharmacokinetic profile. Together, these developments establish melittin-based nanocarriers as effective and adaptable instruments in the battle against cancer, opening the door for next-generation targeted treatments.

with fewer side effects and greater therapeutic potential.

REFERENCE:

1. Rizkallah J, Charbel N, Yassine A, El Masri A, Raffoul C, El Sardouk O, Ghezzawi M, Abou Nasr T, Kreidieh F. Melittin-Based Nanoparticles for Cancer Therapy: Mechanisms, Applications, and Future Perspectives. *Pharmaceutics.* 2025 Aug;17(8):1019.
2. Pandey P, Khan F, Khan MA, Kumar R, Upadhyay TK. An updated review summarizing the anticancer efficacy of melittin from bee venom in several models of human cancers. *Nutrients.* 2023 Jul 12;15(14):3111.
3. Pareek A, Mehlawat K, Tripathi K, Pareek A, Chaudhary S, Ratan Y, Apostolopoulos V, Chuturgoon A. Melittin as a therapeutic agent for rheumatoid arthritis: mechanistic insights, advanced delivery systems, and future perspectives. *Frontiers in Immunology.* 2024 Dec 20;15:1510693.
4. Zhang, S., Liu, Y., Ye, Y., Wang, X.-R., Lin, L.-T., Xiao, L.-Y., Zhou, P., Shi, G.-X., & Liu, C.-Z. (2018). Bee venom therapy: Potential mechanisms and therapeutic applications. *Toxicon*, 148,
5. Khalil A, Elesawy BH, Ali TM, Ahmed OM. Bee venom: From venom to drug. *Molecules.* 2021 Aug 15;26(16):4941.
6. Gajski G, Garaj-Vrhovac V. Melittin: a lytic peptide with anticancer properties. *Environmental toxicology and pharmacology.* 2013 Sep 1;36(2):697-705.
7. Wang A, Zheng Y, Zhu W, Yang L, Yang Y, Peng J. Melittin-based nano-delivery systems for cancer therapy. *Biomolecules.* 2022 Jan 12;12(1):118.
8. Yaacoub C, Wehbe R, Roufayel R, Fajloun Z, Coutard B. Bee venom and its two main components—melittin and phospholipase A2—as promising antiviral drug candidates. *Pathogens.* 2023 Nov 15;12(11):1354.
9. Małek A, Strzemski M, Kurzepa J, Kurzepa J. Can bee venom be used as anticancer agent in modern medicine?. *Cancers.* 2023 Jul 21;15(14):3714.
10. Yao Y, Zhou Y, Liu L, Xu Y, Chen Q, Wang Y, Wu S, Deng Y, Zhang J, Shao A. Nanoparticle-based drug delivery in cancer therapy and its role in overcoming drug resistance. *Frontiers in molecular biosciences.* 2020 Aug 20;7:193.
11. Li Y, Ruan S, Wang Z, Feng N, Zhang Y. Hyaluronic acid coating reduces the leakage of melittin encapsulated in liposomes and increases targeted delivery to melanoma cells. *Pharmaceutics.* 2021 Aug 11;13(8):1235.
12. Jadhav V, Bhagare A, Roy A, Lokhande D, Pardeshi S, Aher J. Bee venom loaded nanomaterials for cancer therapy: a novel approach. *Discover Materials.* 2025 Jun 1;5(1):92.
13. Ye R, Zheng Y, Chen Y, Wei X, Shi S, Chen Y, Zhu W, Wang A, Yang L, Xu Y, Peng J. Stable loading and delivery of melittin with lipid-coated polymeric nanoparticles for effective tumor therapy with negligible systemic toxicity. *ACS Applied Materials & Interfaces.* 2021 Nov 18;13(47):55902-12.
14. Kumar GP, Rajeshwarrao P. Nonionic surfactant vesicular systems for effective drug delivery—an overview. *Acta pharmaceutica sinica B.* 2011 Dec 1;1(4):208-19.
15. Kwon NY, Sung SH, Sung HK, Park JK. Anticancer activity of bee venom components against breast cancer. *Toxins.* 2022 Jul 5;14(7):460.
16. Alajmi R, Alkhuriji A, Alobaid H, Alajami MA, Alzhrani A, Majrashi N, Alsaqabi F, Farooq H. Therapeutic Efficacy of Bee Venom Conjugated Silver Nanoparticles

- against Breast Cancer. Indian Journal of Animal Research.;1:5.
17. Park MH, Kim JH, Jeon JW, Park JK, Lee BJ, Suh GH, Cho CW. Preformulation studies of bee venom for the preparation of bee venom-loaded PLGA particles. *Molecules*. 2015 Aug 18;20(8):15072-83.
18. Carpeta M, Nuñez-Estevez B, Soria-Lopez A, Simal-Gandara J. Bee venom: an updating review of its bioactive molecules and its health applications. *Nutrients*. 2020 Oct 31;12(11):3360.
19. Bogdanov S. Bee venom: composition, health, medicine: a review. *Peptides*. 2015;1:1-20.
20. Ram SK, Jayapal N, Nanaiah P, Aswal GS, Ramnarayan BK, Taher SM. The therapeutic benefits of bee venom. *Int J Curr Microbiol App Sci*. 2014 Dec 10;3:377-81.
21. Ullah A, Aldakheel FM, Anjum SI, Raza G, Khan SA, Gajger IT. Pharmacological properties and therapeutic potential of honey bee venom. *Saudi Pharmaceutical Journal*. 2023 Jan 1;31(1):96-109.
22. Stela M, Cichon N, Spławska A, Szyposzynska M, Bijak M. Therapeutic potential and mechanisms of bee venom therapy: a comprehensive review of apitoxin applications and safety enhancement strategies. *Pharmaceuticals*. 2024 Sep 14;17(9):1211.
23. Lee H.J and Bae Y.H. Engineered melittin analogues for selective cancer therapy: Recent advances and challenges. *Biomaterials science*,11(7),1981-1993.
24. Gajski G, Leonova E, Sjakste N. Bee venom: composition and anticancer properties. *Toxins*. 2024 Feb 29;16(3):117.
25. Soares KS, Formiga AL, Uchoa AF, Cardoso AL, Rodrigues JP, Leite JD, da Silva LF, Alves AE, Barbosa Filho JM, Junior FH. Beyond the peril of envenomation: A nanotechnology approach for therapeutic venom delivery. *Journal of Drug Delivery Science and Technology*. 2025 Jan 27:106652.
26. Supriya Y, Jamparapu PR, Komera S, Saravanan S, Balakrishnan P, Sivamalar S. Biomedical Applications of Bee Venom: A Natural Approach to Cancer, Infections, and Inflammatory Diseases. *Journal of Pure & Applied Microbiology*. 2025 Sep 1;19(3).
27. Ma R, Mahadevappa R, Kwok HF. Venom-based peptide therapy: insights into anti-cancer mechanism. *Oncotarget*. 2017 Oct 11;8(59):100908.
28. Huang C, Jin S, Liu Y. Combination of melittin with nanotechnology and immunotherapy for enhanced anticancer efficacy. *Advanced drug delivery reviews*, 179,113999. Review article published in 2021
29. Ghodeif SK, El-Fahla NA, Abdel-Rahman MA, El-Shenawy NS. Arthropod venom peptides: Pioneering nanotechnology in cancer treatment and drug delivery. *Cancer Pathogenesis and Therapy*. 2025 Apr 14;3:E01-1.

HOW TO CITE: Bhuvana Ezhil Rohini*, Subhalakshmi R., Abishake S., Devadharshini M., Kirankumar R. , Development Of Melittin- Based Nanocarriers For Targeted Cancer Therapy., *Int. J. of Pharm. Sci.*, 2026, Vol 4, Issue 2, 693-701. <https://doi.org/10.5281/zenodo.18491831>

