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ARTICLE INFO ABSTRACT
Published: 22 Jan 2026 Metabolic dysfunction—-associated steatotic liver disease (MASLD) has emerged as the
Keywords: most common chronic liver disorder worldwide, closely linked to the global rise in
MASLD; MASH; obesity, type 2 diabetes mellitus, and cardiometabolic disease. Affecting nearly one-
Pharmacological therapy; third of the adult population, MASLD represents a broad disease spectrum ranging from
Liver fibrosis simple steatosis to metabolic dysfunction—associated steatohepatitis (MASH),
DOL: progressive fibrosis, cirrhosis, and hepatocellular carcinoma. Beyond liver-related
10.5281/zenodo.18340110 morbidity, MASLD significantly increases the risk of cardiovascular disease, chronic

kidney disease, and extrahepatic malignancies, placing a substantial burden on
healthcare systems globally. The pathogenesis of MASLD is complex and
multifactorial, involving insulin resistance, dysregulated lipid metabolism,
mitochondrial dysfunction, oxidative stress, chronic inflammation, fibrosis, gut
microbiota alterations, and genetic susceptibility. For many years, therapeutic
management relied largely on lifestyle modification and control of metabolic
comorbidities, approaches that are difficult to sustain and often insufficient to halt
disease progression. The recent approval of resmetirom, a selective thyroid hormone
receptor-B agonist, in 2024 marked a critical breakthrough and renewed momentum in
MASLD drug development. In parallel, a robust pipeline of emerging
pharmacotherapies is rapidly reshaping the treatment landscape. These agents target key
pathogenic pathways and include THR-B agonists, incretin-based therapies such as
GLP-1, GIP, and dual or triple receptor agonists, peroxisome proliferator-activated
receptor agonists, sodium—glucose cotransporter inhibitors, fibroblast growth factor
analogs, farnesoid X receptor agonists, AMPK activators, and acetyl-CoA carboxylase
inhibitors. This comprehensive review synthesizes current evidence from preclinical and
clinical studies on emerging pharmacotherapies for MASLD, highlighting their
mechanisms of action, therapeutic efficacy, and safety profiles. It also discusses ongoing
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challenges, including variable antifibrotic responses and
disease heterogeneity, underscoring the need for
personalized and combination treatment strategies.
Collectively, these advances signal a promising shift toward
disease-modifying therapies that may significantly improve
long-term outcomes in MASLD.

INTRODUCTION

Metabolic dysfunction-associated steatotic liver
disease (MASLD), previously referred to as non-
alcoholic fatty liver disease (NAFLD), and has an
estimated global prevalence of 30%™2., MASLD
is defined by the presence of >5% hepatic steatosis
with at least one metabolic risk factor (overweight,
hyperglycemia, hypertension, hyperlipidemia) in
the absence of other causes of steatosis, such as
medications, alcohol use, viral hepatitis, or other
illnesses BLMASLD has emerged as the most
prevalent chronic liver disease worldwide,
affecting ~25%-30% of the adult population, with
higher prevalence observed in individuals with
obesity and type 2 diabetes . The global
epidemic of MASLD is increasing worldwide.
People with MASLD can progress to cirrhosis and
hepatocellular carcinoma and are at increased risk
of developing type 2 diabetes, cardiovascular
disease, chronic kidney disease, and extrahepatic
cancer and it poses a substantial burden on both
patient health and worldwide healthcare systems
Bl The mortality rate of NASH is predicted to
double by 2030. MASH is a progressive form of
MASLD, and approximately 20% of patients with
MASLD progress to MASH [©luntil recently,
given the lack of approved therapies, therapeutic
strategies have primarily focused on lifestyle
modifications and optimization of comorbidities.
While lifestyle interventions can be effective, they
are challenging to maintain, which limits their
overall impact [, Therefore, as fibrosis
improvement is crucial to bend the arc of disease
progression, and sustained weight loss through
lifestyle intervention is achieved by only a
minority, pharmacological therapies are needed to
meaningfully impact liver-related outcomes. After
decades of research, the Food and Drug
Administration (FDA) approved the first treatment
for MASH in March 2024, resmetirom, a thyroid
hormone receptor-B (THR-P) agonist . Several
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drug candidates are currently in the pipeline to
enrich the armamentarium of treatment for
MASH. This comprehensive review highlights
unmet clinical needs in MASLD and discussing
the expanding pharmacotherapy landscape.

PATHOPHYSIOLOGY of MASLD

Metabolic dysfunction—associated steatotic liver
disease (MASLD) develops through tightly
interconnected disturbances in hepatic lipid
handling, metabolic signaling, inflammation, and
fibrosis, rather than a single linear pathway. The
key processes include dysregulated lipid influx
and synthesis, lipotoxic cell stress, immune
activation, and progressive scarring driven by
hepatocyte—stellate—immune—endothelial
crosstalk and gut-liver interactions [°1.Risk factors
for MASLD include obesity, insulin resistance,
hypertension, and hypertriglyceridemia 191,
Environmental factors, such as diet and physical
inactivity, primarily increase the risk of hepatic
steatosis. Excessive caloric intake beyond
metabolic demand results in adipose tissue fat
overload, promoting inflammation and insulin
resistance in adipose tissue 1. MASLD develops
through a coordinated process initially described
as the two-hit hypothesis [*2I. The first hit involves
hepatic steatosis driven by enhanced de novo
lipogenesis (DNL), which worsens insulin
resistance 2131, Insulin resistance disrupts adipose
tissue lipolysis, increasing the delivery of free fatty
acids to the liver (4],

The second hit refers to progression from MASLD
to MASH and involves added cellular stressors,
including endoplasmic reticulum (ER) stress,
mitochondrial dysfunction, and oxidative stress
with excessive reactive oxygen species (ROS)
generation 5161 Accumulation of saturated fatty
acids due to increased fructose intake or
cholesterol buildup within the ER further amplifies
cellular stress and DNL 12181,

Disordered hepatic lipid metabolism

In MASLD, insulin resistance and visceral obesity
enhance fatty acid flux from adipose tissue to the
liver, while hyperinsulinemia and hyperglycemia
activate lipogenic transcription factors such as
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SREBP1c and ChREBP. Concurrent defects in
fatty acid oxidation and cholesterol-bile acid
homeostasis impair lipid clearance, resulting in
triglyceride accumulation and macrovesicular
steatosis in hepatocytes I,

Lipotoxicity, oxidative, and mitochondrial

stress

Excess hepatic fatty acids exceed the capacity of
B-oxidation and triglyceride storage pathways,
leading to formation of lipotoxic intermediates.
These species induce ER stress, oxidative damage,
mitochondrial dysfunction, and inflammasome
activation,  promoting  hepatocyte  injury,
inflammation, and fibrosis characteristic of MASH
[191 When hepatic lipid buffering is overwhelmed,
toxic lipids such as saturated fatty acids, free

cholesterol, ceramides, and oxidized lipids
accumulate and directly damage cellular
organelles. This activates stress signalling

pathways and regulated cell death mechanisms,
including apoptosis, necroptosis, and ferroptosis,
driving the transition from simple steatosis to
inflammatory MASH 29,

Inflammation and immune dysregulation

Injured hepatocytes release danger-associated
molecular patterns and lipotoxic signals that
activate Kupffer cells and recruit monocyte-
derived macrophages via pattern recognition
receptors. These immune cells secrete pro-
inflammatory cytokines and chemokines (e.g.,
TNF-o, IL-1B, 1IL-6, CCL2), sustaining hepatic
inflammation and immune cell recruitment 241,

Fibrogenesis and multicellular liver crosstalk

Persistent hepatocyte injury and inflammation
activate hepatic stellate cells through paracrine
signaling from hepatocytes, macrophages, and
sinusoidal endothelial cells. Activated stellate cells
differentiate  into  myofibroblasts,  deposit
extracellular matrix, and disrupt sinusoidal
structure, while endothelial dysfunction worsens
hypoxia and fibrogenic signaling, leading to
advanced fibrosis and cirrhosis 21,

Gut-liver axis, genetics, and systemic context
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Gut dysbiosis, increased intestinal permeability,
and altered microbial metabolites deliver
inflammatory and metabolic signals to the liver via
the portal circulation. These factors interact with
host genetics and systemic metabolic disorders to
influence disease progression [2324 Genetic
variants in PNPLA3, TM6SF2, and HSD17B13
increase susceptibility to MASLD, fibrosis
progression, and hepatocellular carcinoma 2,
Collectively, these “multiple hits” initiate hepatic
steatosis and promote its progression to
inflammation and fibrosis ?¢1, while chronic low-
grade systemic inflammation contributes to
cardiovascular disease 2”1 and tumorigenesis 12,
These interconnected pathways represent key
targets for  pharmacological  intervention,
including therapies aimed at improving insulin
sensitivity, lipid metabolism, mitochondrial
function, inflammation, fibrosis, and gut—liver axis
signalling.

Current Pharmacological Approaches

Lifestyle-induced weight loss remains the
cornerstone of NAFLD/MASLD management, but

several drugs are traditionally used as
pharmacologic  options in  patients  with
biopsy-proven  steatohepatitis or  high-risk

metabolic profiles. These agents mainly target
steatosis, inflammation, and metabolic risk rather
than providing proven, robust antifibrotic effects,
and most are used off-label in routine practice [2°1,

Pioglitazone (30-45 mg/day)

Pioglitazone, a thiazolidinedione, acts as a
selective  peroxisome  proliferator-activated
receptor gamma (PPAR-y) agonist. It promotes
adipocyte differentiation and enhances peripheral
insulin sensitivity, thereby reducing the flux of
free fatty acids (FFAS) to the liver B%, Pioglitazone
also decreases hepatic de novo lipogenesis and
inflammatory ~ cytokine  expression  while
increasing adiponectin levels, which has anti-
inflammatory and insulin-sensitizing properties
B Randomized trials and meta-analyses
summarized in recent pharmacologic treatment
reviews show that pioglitazone improves steatosis,
lobular inflammation, hepatocellular ballooning,

2279 | Page



Sakshi Katke, Int. J. of Pharm. Sci., 2026, Vol 4, Issue 1, 2277-2290 [Review

and NAFLD Activity Score, with significant
reductions in aminotransferases and liver fat
content and modest, variable effects on fibrosis
321 RCTs, including PIVENS, have shown
histological improvements in steatosis, lobular
inflammation, and hepatocellular ballooning in
patients with MASH, especially those with T2DM
(331, However, its use may be limited by adverse
effects such as weight gain and fluid retention 41,

Vitamin E (800 IU/day, d-a-tocopherol)

Vitamin E is a lipid-soluble antioxidant that
reduces oxidative damage within hepatocytes, a
key driver in the progression from steatosis to
steatohepatitis [*°]. It neutralizes reactive oxygen
species (ROS) and downregulates pro-
inflammatory signalling pathways. The PIVENS
trial demonstrated significant improvement in
steatohepatitis but not fibrosis among non-diabetic
adults with biopsy-proven NASH [l Despite
moderate improvements in transaminases and
histology, concerns remain about long-term safety,
including a possible increased risk of prostate
cancer in older men and haemorrhagic stroke 7,
Thus, it is not recommended in patients with
diabetes or advanced cirrhosis The PIVENS trial, a
pivotal phase 3 study, evaluated the effects of
vitamin E (800 IU/day) in nondiabetic patients
with biopsy-confirmed MASH. Over 96 weeks,
vitamin E therapy led to significant improvements
in hepatic steatosis and inflammation, resulting in
MASH resolution in 43% of patients compared to
19% in the placebo group (p< 0.001) &8,
However, no significant impact on hepatic fibrosis
was observed 9. A systematic review analysing
data from 11 studies confirmed that vitamin E
reduces alanine aminotransferase (ALT) and
aspartate aminotransferase (AST) levels, hepatic
fat accumulation, and inflammation in
MASLD/MASH. Despite these benefits, its role in
hepatic fibrosis regression remains uncertain,
underscoring the need for long-term trials (41,

Ursodeoxycholic  Acid  (UDCA, 13-15
mg/kg/day)

UDCA is a hydrophilic bile acid with
cytoprotective,  anti-apoptotic, and  anti-
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inflammatory properties serves as a promising
adjunctive  therapy for MASLD/NAFLD,
significantly reducing liver enzymes like ALT,
AST, and GGT in multiple meta-analyses of RCTs
(411 It stabilizes hepatocyte membranes, reduces
hepatic transaminase levels in serum, and protects
hepatocytes from oxidative stress [, Its
hepatoprotective mechanisms include activating
AMPK to inhibit apoptosis (via Bcl-2/Bax),
enhancing autophagy (Bcl-2/Beclin-1),
modulating gut microbiota (boosting
Lachnospiraceae, Akkermansia), and alleviating
steatosis, inflammation, and fibrosis through anti-
oxidant and TGR5-targeted actions [“3l. Doses of
13-35 mg/kg/day prove safe with minor Gl side
effects, complementing lifestyle changes, though
histological improvements vary and more RCTs
are needed for MASLD-specific validation 141,
While extensively used in cholestatic liver
diseases, evidence for its efficacy in MASLD is
limited and inconclusive. Some small trials have
reported improvements in liver enzymes and

steatosis, but histological benefits are uncertain
[45]

Emerging Therapeutic Strategies and Novel
Targets for MASLD/MASH

THR-p Agonists

Thyroid hormone receptor-p (THR-) agonists are
liver-directed thyromimetics that selectively
stimulate THR-PB in hepatocytes, enhancing fatty
acid B-oxidation, reducing de novo lipogenesis,
and improving atherogenic dyslipidaemia while
avoiding the cardiac and skeletal adverse effects
linked to THR-a activation 4547 Resmetirom
(MGL-3196) is the first-in-class oral THR-
agonist to reach phase 3, showing significant
reductions in liver fat by MRI-PDFF and
improvements in LDL-cholesterol, triglycerides,
and apolipoprotein B in NAFLD/MASH
populations 748 In histology-based trials
(MAESTRO-NASH), once-daily 80-100 mg
resmetirom achieved both regulatory-relevant
endpoints of NASH resolution and >1-stage
fibrosis improvement versus placebo. These data
led to regulatory approval in 2024 for MASH with
fibrosis in some regions, positioning resmetirom
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as a benchmark for this drug class [849],
Second-generation THR-B agonists such as
VK2809, ASC41, CS27109 and TG68 are
designed for enhanced hepatoselectivity through
prodrug or liver-targeting chemistry, with
preclinical models showing robust reductions in
hepatic steatosis and improvements in systemic
metabolic parameterst6°0°1, Early-phase clinical
data for VK2809 and ASC41 demonstrate
meaningful relative decreases in liver fat content
and aminotransferases, with preservation of
cardiovascular safety markers %% These agents
are being explored as monotherapy or in
combination with GLP-1 receptor agonists,
FGF-21 analogues or FXR agonists for advanced
MASLD B3 Across trials, THR-Pp agonists
generally show an acceptable safety profile, with
predominantly mild gastrointestinal symptoms
and transient, modest changes in thyroid-axis
parameters, and no consistent signal for
arrhythmia or bone toxicity at therapeutic
doses.[ 647481 However, current reviews emphasise
that heterogeneity of MASLD phenotypes, limited
long-term outcome data, and the need for careful
patient selection by fibrosis stage and
cardiometabolic risk remain key challenges before
broad adoption 653 Future research should
prioritise head-to-head comparisons with other
mechanism-based agents and evaluation of hard
outcomes such as decompensation, cardiovascular
events and mortality 1,

GLP-1 and GIP Receptor Agonists

GLP-1 receptor agonists and dual GLP-1/GIP
agonists promote weight loss through appetite
suppression, enhanced insulin secretion, and
reduced gastric emptying, indirectly decreasing
hepatic steatosis and lipogenesis in MASLD 54551,
Semaglutide stands out as the first to hit phase 3,
cutting liver fat on MRI scans and clearing NASH
histology in nearly 60% of patients versus under
20% on placebo, though fibrosis gains were
smaller 8571, Tirzepatide takes it further as a dual-
action powerhouse, delivering even bigger weight
drops and MASH resolution rates up to 62% with
fibrosis steps forward in SYNERGY-NASH trials.
That success earned both approvals for
obesity/diabetes and spotlights them as MASLD
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frontrunners 781, Newer players like liraglutide,
dulaglutide, plus triple agonists (GLP-
1/glucagon/GIP) show solid drops in liver fat and
enzymes across early studies and animal work
(59601 Phase 2 data for VK2809-style combos and
multi-agonists hint at stronger fibrosis benefits,
paving way for pairing with THR-$ or FXR drugs
in tough cases P®!, Gastrointestinal intolerance
affects 20-40% initially (nausea predominant);
gallbladder events increased 1.5-2-fold but
hepatotoxicity absent across 50,000+ patients.
Histological gains correlate with >15% weight
loss; long-term decompensation/HCC prevention
and cost-effectiveness data remain pending phase
3 completion 621,

PPAR Agonists

PPARs are nuclear hormone receptors regulating
lipid metabolism and glucose homeostasis; o/0/y
agonists modulate hepatocyte/adipocyte pathways
to suppress steatosis, inflammation, and fibrosis,
while pan-PPAR agents like lanifibranor achieve
multi-isoform synergy in MASLD pathogenesis
63 Pioglitazone (30-45 mg daily, PPAR-y
dominant) achieves MASH resolution in 51% and
primary histological endpoint in 58% of biopsy-
proven patients versus placebo 4. Lanifibranor
(800-1200 mg daily), a pan-PPAR agonist, reduces
liver fat >50% by MRI-PDFF with SAF-A
improvement in 49% vs 19% placebo (NASH-
FITTER phase 2b) I Lanifibranor histology
demonstrates MASH resolution without fibrosis
worsening in 45% (1200 mg dose) plus >1-stage
fibrosis regression in 34% [ Pioglitazone shows
phase 3 histological benefits while lanifibranor
advances to NATiV3 phase 3 67, Saroglitazar
(PPAR-a/y, India-approved) improves MASH
histology and fibrosis regression in Asian NAFLD
cohorts per EVIDENCES 1V study [%8, Elafibranor
(PPAR-0/8) and selective PPAR-6 denifanstat
reduce steatosis 40-60% with ALT normalization
in phase 2 MASLD trials [, VK2809 (dual THR-
B/PPAR-8) demonstrates significant liver fat
reduction; early signals support monotherapy and
GLP-1/THR-B combinations [’ Pioglitazone
risks include weight gain (2-4 kg), bone fractures
(OR 1.45), and heart failure exacerbation;
lanifibranor causes mild anemia (Hb -1.2 g/dL),
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transient CK elevation, and Gl intolerance without
hepatotoxicity Y. Pan-PPARs provide superior
antifibrotic activity versus selective agonists but
require long-term cardiovascular event and
decompensation outcome confirmation against
resmetirom/incretins '],

SGLT1 and SGLT2 Inhibitors

Sodium-glucose co-transporter 1 and 2 (SGLT1/2)
are key glucose transporters in the intestine and
kidneys, and molecular targets of antidiabetic
drugs, flozins. SGLT1 inhibition in the intestine
reduces postprandial glucose absorption, while
SGLT2 inhibition in the kidneys promotes urinary
glucose excretion. Together, these effects reduce
glucose and insulin levels, enhance fatty acid -
oxidation, lower insulin resistance, and promote
caloric deficit, all relevant to MASLD
pathophysiology [®1.SGLT2 and dual SGLT1/2
inhibitors lower plasma glucose by promoting
urinary glucose excretion and blunting intestinal
glucose absorption, which reduces insulin levels,
body weight, and hepatic de novo lipogenesis in
MASLD.73 In addition, these agents activate
hepatorenal protective pathways (AMPK, Nrf2,
FGF-21, HIF-1a), attenuating oxidative stress,
inflammation, and fibrogenic signaling in steatotic
liver disease ["4. Empagliflozin (10-25 mg/day)
significantly reduces liver fat on MRI-PDFF and
lowers ALT and y-GT levels in patients with type
2 diabetes and NAFLD, as shown in the E-LIFT
trial. Sustained reductions in hepatic fat and
improvements in non-invasive fibrosis markers
were confirmed over 52 weeks in MASLD.
Dapagliflozin (10 mg/day) in recent phase 3
MASH studies increased rates of MASH
resolution and fibrosis improvement, with
accompanying reductions in liver stiffness and
aminotransferases "), Across phase 2-3 trials,
canagliflozin, ipragliflozin, and other SGLT2
inhibitors consistently reduce CAP-measured
steatosis and liver enzymes, with modest
improvements in liver stiffness and fibrosis indices
[7378] - Dual SGLT1/2 inhibitors show similar
hepatic benefits with stronger postprandial glucose
control, and combination strategies with GLP-1
receptor agonists or finer none are under
investigation [*7°, SGLT2/SGLT1/2 inhibitors
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are well tolerated, with mainly genitourinary
infections, volume  depletion, and rare
ketoacidosis, and no signal of liver toxicity. They
improve steatosis and liver enzymes, but
confirmation of fibrosis regression and long-term

liver outcomes requires phase 3 MASLD trials
[73.77,79]

FGF Inhibitors and Acetyl-CoA Carboxylase
(ACC) Inhibitors

FGF21 is an endocrine hormone predominantly
produced by the liver, playing a crucial role in
regulating glucose and lipid metabolism. FGF21,
primarily synthesized in hepatocytes, activates
FGFRI1c/B-Klotho  receptor  complexes to
potentiate peripheral insulin action, accelerate
[-oxidation, curtail triglyceride biosynthesis, and
mitigate macrophage infiltration in adipose and
liver tissue (%1, FGF19 variants primarily suppress
bile acid synthesis via FGFR4/FGFR1c while
ACC1/ACC2 drive malonyl-CoA formation for
lipogenesis and CPTL1 inhibition, making both
pathways attractive for steatosis-fibrosis dual
targeting Y. Efruxifermin, an Fc-FGF21 fusion,
reduces liver fat by 50-75% on MRI-PDFF and
achieves MASH resolution without fibrosis
worsening in 40-60% across phase 2b doses
versus 15% placebo, with sustained fibrosis
regression signals at 96 weeks 82831 pegozafermin
(glycol PEGylated FGF21) demonstrates >1-stage
fibrosis improvement in 22-27% and MASH
resolution in 23-37% of F2-F3 patients during
24-week phase 2b ENLIVEN, maintaining
benefits through 48-week extension B4,
Aldafermin (engineered FGF19) yields rapid 30—
50% liver fat reductions and fibrosis trends over
24 weeks in phase 2 8. MK-4074 (liver-targeted
ACC1/ACC2 inhibitor) produces 36%
intrahepatic fat reduction after 4 weeks at 200 mg
BID (NCT01431521), outperforming pioglitazone
(861 PF-05221304 monotherapy achieves 50-65%
liver fat decreases with ALT reductions, but
elevates triglycerides 8-200%; DGAT2 inhibitor
PF-06865571 co-administration (NCT03776175)
does not fully counteract this hyperlipidaemia
[87.88]  FGF21/FGF19 therapies exhibit primarily
mild GI effects and injection reactions; long-term
antifibrotic durability and FGF19 oncogenicity
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risks require phase 3 clarification 28l ACC

inhibitors excel at steatosis but provoke
hypertriglyceridemia necessitating lipid
co-management; cardiovascular and fibrosis

endpoint confirmation pending 86871,
AMPK Activators

AMP-activated protein kinase (AMPK) serves as a
central regulator of cellular energy homeostasis,
influencing pathways related to lipid metabolism,
glucose uptake, and inflammation 81, Out of many
downstream effects of AMPK activation, the most
important in MASLD are inhibition of ACC,
which promotes 3-oxidation; inhibition of sterol
regulatory element-binding protein 1 (SREBP-1c),
which downregulates fatty acid synthase (FAS)
and de novo lipogenesis; and inhibition of B-
Hydroxy p-methylglutaryl-CoA (HMG-CoA)
reductase, which reduces cholesterol synthesis and
promotion of glucose transporter 1 and 4
translocation towards cell membranes. Thus,
AMPK activation has been proposed as a
therapeutic strategy to mitigate hepatic steatosis
and improve insulin sensitivity %, PXL770, a
novel direct allosteric AMPK activator, reduces
liver fat by 10-15% on MRI-PDFF and lowers
ALT by 15-20 U/L in presumed NASH patients
with/without T2DM during 12-week phase 2a
DESTINY-1, with greater responses in high-risk
T2DM-NASH  subgroups®l.  Metformin, an
indirect AMPK activator via LKB1/AMPK
signalling, improves steatosis and ALT in 30% of
NASH patients and decreases NAFLD progression
risk by 40% in meta-analyses of T2DM cohorts.
PXL770 advances to phase 2b while metformin
provides established metabolic support in MASLD
[0 ATX-304, a direct pan-AMPK activator,
reduces hepatic steatosis, oxidative stress, and
lipid synthesis while improving cholesterol
handling in preclinical MASH models, warranting
clinical translation Y. KN21, a 4-chloro-
benzenesulfonamide  derivative,  ameliorates
steatosis and fibrosis via direct AMPK activation
in diet-induced MASH mice by suppressing
stellate  cell activation 2. AICAR, a
pharmacologic AMPK  agonist, alleviates
ferroptosis and endoplasmic reticulum stress in
experimental NAFLD through activation of the

2
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Nrf2/HO-1 pathways 1. PXL770 demonstrates
favourable  tolerability  with only  mild
gastrointestinal effects and no hepatotoxicity,
whereas metformin carries a risk primarily of
lactic acidosis in patients with renal impairment
41 While AMPK activators excel at metabolic
reprogramming, they currently lack phase 3
clinical trial data demonstrating histological
endpoints. Direct AMPK activators such as
PXL770 and ATX-304 may supersede metformin
in fibrosis regression 2. However, head-to-head
trials comparing these agents versus resmetirom,
incretin-based therapies, and long-term outcome
data are still needed I,

CONCLUSION

Metabolic Dysfunction-Associated Steatotic Liver
Disease (MASLD) has rapidly become a major
global health concern, with its progression to
MASH, fibrosis, cirrhosis, and hepatocellular
carcinoma posing significant clinical challenges.
Despite the growing understanding of its
multifactorial pathogenesis, there remains no
single approved pharmacotherapy that addresses
the full spectrum of disease mechanisms.
Emerging therapeutic agents targeting metabolic
pathways, inflammation, lipid homeostasis, and
fibrogenesis have shown encouraging results in
both preclinical and clinical studies. Drugs such as
FXR agonists, PPAR agonists, GLP-1 receptor
agonists, FGF21 analogs, THR-B agonists, and
multi-agonists represent a new era of targeted
treatment strategies with potential to modify
disease outcomes. However, variations in patient
phenotype, disease heterogeneity, and long-term
safety concerns highlight the need for personalized
therapeutic approaches and combination regimens.
As the therapeutic pipeline continues to expand,
large-scale, long-duration clinical trials are
essential to validate the efficacy, safety, and real-
world applicability of these agents. Overall, the
future of MASLD therapy appears promising, with
emerging pharmacotherapies offering hope for
effective disease modification and improved
patient outcomes. The therapeutic landscape for
MASLD is rapidly evolving with several
promising agents that reduce liver fat and, in some
cases, achieve histologic NASH resolution.
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critical
benefit.

regression  remains  the
for long-term clinical

Combination strategies, validated non-invasive
endpoints, and long-term safety/outcomes data
will shape future standards of care.
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