

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

[ISSN: 0975-4725; CODEN(USA): IJPS00] Journal Homepage: https://www.ijpsjournal.com

Research Article

Extraction Isolation Phytochemical Screening and Analysis of Madhunashini (*Gymnema Sylvestre*)

Swati Wakchoure, Akash Nalawade, Tejal Dingore*, Dev Gaikwad, Leena Gharat, Kamini Ghavat

Shivajirao S Jondhle College of Pharmacy, Asangaon, Thane.

ARTICLE INFO

Published: 23 Aug 2025

Keywords:

Phytochemistry, Extraction, Analytical, Madhunashini. DOI:

10.5281/zenodo.16932631

ABSTRACT

The present study focuses on the extraction, isolation, phytochemical screening, and analysis of Madhunashini (*Gymnema Sylvestre*), a medicinal plant renowned for its antidiabetic and therapeutic properties in traditional Ayurvedic medicine. The crude extracts of powdered leaves were then analyzed through preliminary phytochemical screening, revealing the presence of key secondary metabolites such as alkaloids, flavonoids, saponins, glycosides. Further isolation of bioactive components was carried out using chromatographic techniques, and the compounds were characterized using analytical tools. By applying various phytochemical and analytical techniques, the research seeks to validate the chemical basis of the plant's medicinal value and provide insights for its potential use in phytopharmaceutical development.

INTRODUCTION

Medicinal plants, which form the backbone of traditional medicine, have been subject for very intense pharmacological studies for last few decades; this has been brought about by the acknowledgment of plants as potential sources of new compounds of therapeutics value and as sources of lead compounds in the drug development. In developing countries, it is estimated as 80% of the population depend on traditional medicine for their primary health care.

Thus, need for screening of medicinal plants for bioactive compounds arises as a basis for further pharmacological studies.¹

Gymnema Sylvestre (G. sylvestre) (retz.) schult.² belonging to family asclepiadaceae is widely found in many different parts of the world. G. sylvestre mainly native to Asia (including the Arabian Peninsula), Africa and Australia, the Deccan peninsula of western India, tropical Africa, Malaysia, Srilanka, Japan, Germany, southern China, Vietnam and USA. G. sylvestre is well

*Corresponding Author: Tejal Dingore

Address: Shivajirao S Jondhle College of Pharmacy, Asangaon, Thane.

Email : tejald070@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

known for its sweet taste suppressing activity and also used for the treatment of diabetes mellitus and obesity. In traditional medicine G. sylvestre is used as a diuretic and remedy for diabetes mellitus.^{3,4}

Gymnema Sylvestre has a long history of use in traditional medicine, particularly in Ayurvedic systems. The plant, known as "Gurmar" in Sanskrit, means "sugar destroyer" 5,6,7 and is used to support diabetes management, reduce sugar cravings, and improve digestive health. Modern research has explored the bioactive compounds, including gymnemic acids, to understand the mechanisms behind its taste-modifying and antidiabetic effects. In recent times, researchers have investigated gymnemic acids and other bioactive compounds better understand to effects. 8,9,10,11,12

Materials and Methods outlines the experimental design, procedures, and analytical techniques used in the study.

Collection and Authentication of Plant:

The powdered leaves of *Gymnema Sylvestre* were obtained from Trivikram Products. The leaves were initially dried under shade, away from direct sunlight, before being processed into powder. The dried leaves were then cleaned using a mechanical grinder to remove any extraneous matter and coarsely ground. The resulting powder was passed through a 120-mesh sieve to ensure uniformity and remove any excessively fine particles. The retained coarse powder was then utilized for subsequent extraction procedures. Dr. Harshad Pandit performed authentication of the plant material through morphological comparison. A voucher specimen has been deposited.

MATERIAL AND METHODS

Figure 1: Authentication of Plant Gymnema Sylvestre

Pharmacognostic Studies:

1. Macroscopy

Visual examinations of leaves were conducted by the naked eye, and the characteristics such as shape, colour, taste, and smell of the leaves were assessed and documented.

2. Microscopy:

Morphology of fresh *Gymnema Sylvestre* was studied. Microchemical and pulverized

characteristic of fresh leaves was taken for atomic evaluation.

Evaluation Of Physical Constant:

1. Determination of Foreign Organic Matter:

5 grams of *Gymnema Sylvestre* leaf powder were weighed and spread on a clean, white surface under proper lighting. 'Foreign organic matter were manually separated using forceps. The separated foreign matter was accurately weighed. The percentage of foreign organic matter was calculated.

2. Determination of Moisture Content:

Five grams of *Gymnema Sylvestre* powder were accurately weighed using an analytical balance and transferred to a pre-tared porcelain crucible. The crucible containing the sample was then placed in a preheated oven maintained at 105°C for a duration of 10 to 15 minutes. Following the drying period, the crucible was carefully removed from the oven and allowed to cool to room temperature in a desiccator, ensuring minimal moisture reabsorption. Subsequently, the crucible and dried sample were re-weighed using the same analytical balance. The moisture content was calculated as the percentage weight loss relative to the initial sample weight.

3. Determination of Total Ash

Weigh an empty crucible and record its weight. Add 5 g of the sample to the crucible and weigh again. Place the crucible in a muffle furnace and incinerate at 550–600°C for 2–3 hours until the sample is completely ashed. Cool the crucible in a desiccator and weigh it along with the ash. The total ash content is calculated as a percentage of the initial sample weight.

4. Determination of Water-Soluble Ash

Weigh the total ash obtained from the previous step and add 10–20 mL of distilled water. Stir the mixture thoroughly and filter it through a preweighed filter paper. Dry the residue retained on the filter paper, weigh it, and determine the water-soluble ash by subtracting the residue weight from the total ash.

5. Determination of Water-Insoluble Ash

Follow the same procedure as water-soluble ash, but instead of calculating the dissolved portion, the weight of the residue retained on the filter paper is recorded as water-insoluble ash.13,14

Extraction Of Gymnema Sylvestre

50 grams of *Gymnema Sylvestre* powder were subjected to maceration in 500 mL of 40% v/v ethanol for 100 hours at ambient temperature. Following the maceration period, the resulting extract was separated from the marc by filtration through [specify filter type, e.g., Whatman No. 1 filter paper]. The filtrate was then concentrated by evaporation under controlled conditions on a temperature-regulated hot plate until a dry, solid extract was obtained. This extract was subsequently pulverized to a fine powder and stored for further analysis.

Preliminary Phytochemical Tests:

Table 1: Preliminary Phytochemical tests 15,16

Sr.	Constituents	Test
No.		
1	Saponin	Foam Test: Shake extract
	_	with water vigorously in a
		test tube.
2	Alkaloid	Wagner's Reagent: Take 2
		mL of aqueous extract in a
		test tube. Add a few drops of
		Wagner's reagent.
3	Flavonoid	Lead Acetate Test : Add few
		drops of lead acetate
		solution to the extract.

4	Tannin	Gelatine Test : Take 2 mL
		of aqueous extract in a test
		tube. Add a few drops of 1%
		Gelatine solution.
5	Carboxylic	Sodium Bicarbonate Test:
	acid	Add a pinch of NaHCO3 to
		the extract.
6	Triterpenoid	Salkowski Test : Mix extract
		with chloroform, then add
		concentrated H ₂ SO ₄
		carefully along the side of
		the test tube.

Analytical Studies

A. Thin Layer Chromatography

- 1. Plate Preparation: Pre-coated silica gel TLC plate; sample spotted 1 cm from the base.
- 2. Mobile Phase: Chloroform: Methanol (9:1 v/v) prepared and chamber saturated.
- 3. Development: Plate placed in the saturated chamber; solvent allowed to ascend.
- 4. Plate Removal & Drying: Plate removed at solvent front; dried.
- 5. Visualization: Detecting reagent sprayed; spots observed under UV light/iodine.

B. UV Spectroscopy

- 1. Prepare the alcoholic extract of the drug.
- 2. Dissolve 1 mg of extract in 1 mL of methanol/ethanol to prepare a stock solution of 10 mg/ml.
- 3. Take 1 mL of the stock solution and dilute it to 10 mL with methanol/ethanol (final concentration = 100 μg/mL).
- 4. Scan the prepared sample solution in the wavelength range of 200-400 nm using UV spectroscopy.
- 5. Use methanol/ethanol as a blank.
- 6. Record the absorbance spectrum and identify the λ max (wavelength at maximum absorption).

C. Fourier Transform Infrared Spectroscopy

- 1. Dried poodles of crude drug extract were used for FTIR analysis.
- 2. The sample was loaded onto FTIR spectroscope (BROKER, ALPHA II, Platinum AIR (in a scan range 350-8000 cm^-1)

D. GS-MS (Gas Chromatography-Mass Spectroscopy)

- 1. To determine the various bioactive chemicals, present, the extract was submitted to GC MS analysis.
- 2. The Agilent Technologies 7890 B GC system instrument used software chemstation to analyse the material.
- 3. The DBT-S-MS column, which measured 30 m x 0.15 m x 0.5 m, was utilized.

Three microliters of methanol extract were injected into the specimen at a temperature of 250°C at a steady rate with a split ratio of 10:1.

Oven temperature and carrier gas as helium delay of three minutes Start at 40°C for three minutes, then ramp up to 320°C at a rate of 1°C per minute, holding for fifteen minutes. 17,18,19

RESULTS AND DISCUSSION

Pharmacognostic Evaluation:

In pharmacognostic study of leaves of *Gymnema Sylvestre* macroscopic, microscopy, powder characteristics and physicochemical parameters were studied.

1. Macroscopy

Figure 2: Macroscopy Of Gymnema Sylvestre leaf

Table 2: Morphological and Organoleptic

	•	<u> </u>
Sr. No.	Parameters	Features
1	Colour	Green
2	Odor	Characteristic
3	Taste	Bitter and Astringent
4	Size	1.25 -2.0 in X 0.5-1.25 in
5	Shape	Ovate, Elliptic

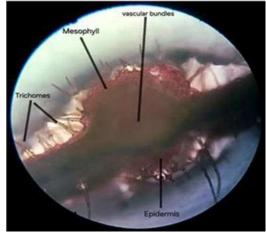


Figure 3: Transverse section of Gymnema Sylvestre

Microscopic study of leaves part:

Table 3: Powder Characteristics of Gymnema Sylvestre leaves

Sr. No.	Reagents	Observation	Characteristics
1.	Phloroglucinol + Conc. HCl	Pink Colour	Fibers and vessels
2.	Sudan red	Red colour	Trichomes, Epidermal cells,
			Vascular bundles and Mesophyll

1. Trichomes

Unicellular or multicellular non-glandular trichomes

2. Epidermal Cells

The upper and lower epidermal layers, with polygonal cells.

3. Vascular bundles

Collateral and closed

4. Fibers

Lignified fibers and spiral/thickened xylem vessels.

5. Mesophyll

Dorsiventral, shows two distinct layers.

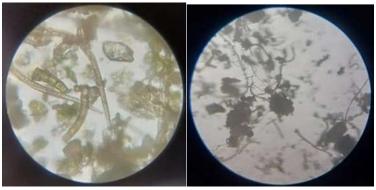


Figure 4: Powder characteristics of Gymnema Sylvestre

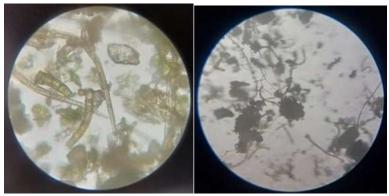


Figure 5: Lower epidermis of Gymnema Sylvestre

Determination of Physical Constants:

02	3.2
03	4.8

1. Determination of Foreign Organic Matter:

No Foreign Organic Matter detected.

2. Determination of Moisture Content:

Table 4: Loss of moisture obtained

Time	Loss of Moisture (w/w %)
00	0.0
01	1.6

3. Determination of Ash values:

Table 5: Ash values obtained

Sr. No.	Parameters	Value (w/w)
1.	Total Ash	4.86
2.	Water Soluble Ash	2.50
3.	Water Insoluble Ash	2.36

4. Extractive Values

Table 6: Extractive value obtained

Parameters	Value (w/w%)	Color	Appearance	Yield
Alcohol Soluble	11.8	Dark Brown	Semi-solid and sticky	5.90

Preliminary Phytochemical Study

Qualitative analysis was done to detect various chemical constituents by performing tests for alkaloids, glycosides, Saponin, flavonoids, tannins, carboxylic acid and triterpenoids.

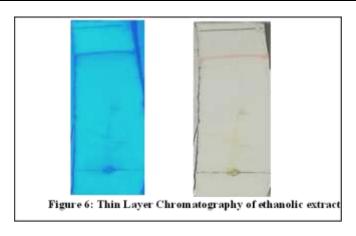
Table 7: Preliminary phytochemical screening of extract

Sr. No.	Constituents	Result
1.	Saponin	+
2.	Alkaloid	+
3.	Flavonoids	+
4.	Tannins	-
5.	Carboxylic acid	+

6.	Glycosides	+
7.	Triterpenoid	-

Note: '+ve' used for positive test and '-ve' used for negative test.

The results of preliminary phytochemical study shown in Table No. presence of Saponin, Alkaloid, Flavonoids, Carboxylic acids and Glycosides.


Analytical Study

1. TLC (Thin Layer Chromatography)

Thin layer chromatography technique is used for the separation, isolation and identification of constituents presents in the Ethanol extract.

Table 8: Thin Layer Chromatography values obtained

Extract	Solvent System	Detecting agent	Color of Spot	Rf Value
Ethanoic Extract	Chloroform: Ethanol	Sulfuric acid	Yellow	0.28
	9:1		Green	0.54

2. UV Spectroscopy

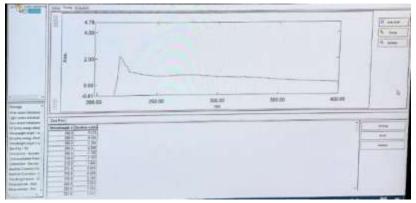


Figure 7: UV spectra of ethanolic extract

Table 9: UV spectra of ethanolic extract

Observation	Result	
Peak Spotted	210 to 290 nm	

3. FTIR (Fourier Infrared)

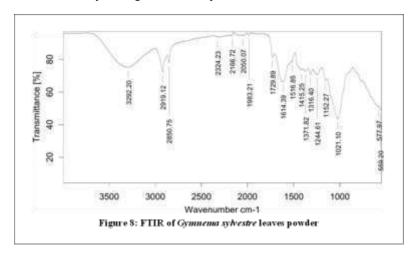


Table 10: FTIR results for Gymnema Sylvestre

Table 10: FTIR results for Gymnema Sylvestre						
Wavenumber	Absolute	Width	Bond	Functional Group		
	Intensity					
3292.2016	0.753	429.9624	O-H stretch, H- bonded	Alcohols, Phenols		
2919.1199	0.722	133.2092	C-H stretch	Alkane		
2850.7524	0.780	13.9105	C-H stretch	Alkane		
2324.2251	0.934	3383.1935	C≡N stretch (nitrile	Nitrile		
2166.7181	0.943	572.6755	C≡C stretch	Alkyne		
2050.0719	0.945	112.7555	Overtone/combination n band or highly conjugated system	-		
1983.2124	0.947	14.1838	Overtone/combination n band or highly conjugated system	-		
1729.8855	0.813	848.7900	C=O stretch	Carbonyl (aldehyde, ketone, ester, carboxylic acid)		
1614.3919	0.663	131.3951	C=C stretch or C-C stretch	Alkene or aromatic ring		
1516.8542	0.784	381.8738	N-H bend or C-C stretch	1° amine or aromatic ring		
1415.2451	0.735	448.4091	C-H bend	Alkane		
1371.8204	0.728	511.0202	C-H bend	Alkane		
1316.4043	0.706	550.5139	C-O stretch or C-N stretch	C-O bond or aromatic amine		
1244.6087	0.707	52.8105	C-N stretch	Aliphatic amine		
1152.2681	0.674	402.8943	C-O stretch	C-O bond		
1021.1000	0.437	149.4168	C-H bend	Alkene		
577.9747	0.507	18.1508	C-H bend	C-Cl bond		
559.2007	0.021	12.4092	C-Br stretch	C-BR bond		

4. GC-MS (Gas Chromatography-Mass Spectroscopy)

Figure 9: GC-MS results for Gymnema Sylvestre

Table 11: Interpretation of Chromatogram²⁰⁻⁴²

Serial	Retention-	Area	Structure	Compound	Qual
No.	n time	%		•	
1	20.761	0.42		Varamol	96
2	23.033	1.03		1,2,3,4-Cyclohexanetetrol	92
3	26.918	40.26		Phosphonothioic acid, methyl-, S-(2- diethylaminoethyl), O-2- methylpropyl ester	50
4	28.362	1.123		Bicyclo[3.1.1]heptane, 2,6,6- trimethyl-, [1R- (1.alpha.,2.beta.,5.alpha.)	60
5	28.493	0.40	\·\\\	-thiaundecane,2,10 diethyl-	53
6	29.625	0.20	•	lecanoic acid, 14-methyl, methyl ester	89
7	30.245	9.34		Palmitic acid	97
8	31.653	0.14		Margaric acid	94
9	32.234	1.40		Phytol	93

10	32.628	6.07		Oleic acid	98
			","		
11	32.902	2.06	"'\	Stearic acid	99
12	33.452	0.14		2h-indol-2-one, 1- (2,6- dichlorophenyl)- 1,3-dihydro	99
13	35.134	0.12		4H-	49
13	33.134	0.12		Dibenzo[de,g]quinoline, 5,6,6a,7-tetrahydro-1,2- dimethoxy-, (R)	47
14	37.415	0.54	н,с он	4-hydroxyphenylbutazone	89
14	37.413	0.54	N-N	4-nydroxyphenyloddazone	89
15	39.012	0.06		2-Ethylacridine	64
16	40.040	1.95	,,2,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Erucamide	97
17	40.379	0.49		Pyridine-3-carboxamide, oxime, N-(2- trifluoromethylphenyl)	49
18	43.039	0.20	}	1,6-Cycloheptatrien-1-one, 3,5-bis-trimethylsilyl-	53

19	43.504	1.72	HO CH ₃ CH ₅ CH ₅	Vitamin E	96
20	45.182	5.69		Stigmasterol	97
21	46.573	3.12		BetaAmyrin	94
22	47.915	2.07		Urs-12-en-3-ol, acetate	53

CONCLUSION

The pharmacognostic and phytochemical evaluation of *Gymnema Sylvestre* leaves validates its traditional use in herbal medicine. The presence of diverse bioactive compounds supports its potential role in managing diabetes and related disorders.

This study provides a scientific basis for further research and standardization of *Gymnema Sylvestre* as a medicinal plant-MS analysis revealed multiple bioactive compounds.

REFERENCES

1. Esther N. Matu, Johannes van Staden, Antibacterial and anti-inflammatory activities of some plants used for medicinal purposes in Kenya, Journal of Ethnopharmacology, Volume 87, Issue 1,2003, Pages 35-41, ISSN

- 0378-8741, https://doi.org/10.1016/S0378-8741(03)00107-7.
- 2. "Integrated Taxonomic Information System". www.itis.gov. Retrieved 2018-02-01.
- 3. Baskaran K, Ahamath BK, Shanmugasundaram KR, et al. Antidiabetic effect of a leaf extract from *Gymnema Sylvestre* in non-insulin-dependent diabetes mellitus patients. J Ethnopharmacol. 1990;30(3):295-305.
- 4. Yoshikawa K, Amimoto K, Arihara S, et al. Structure studies of new antisweet constituents from *Gymnema Sylvestre*. Tetrahedron Lett. 1989;30(9):1103-6.
- 5. Quattrocchi U (1999-11-23). CRC World Dictionary of Plant Names: Common Names, Scientific Names, Eponyms, Synonyms, and Etymology. Taylor & Francis US. ISBN 978-0849326769.
- 6. Tiwari P, Mishra BN, Sangwan NS (2014). "Phytochemical and pharmacological

- properties of *Gymnema Sylvestre*: an important medicinal plant". BioMed Research International. 2014: 830285. doi:10.1155/2014/830285. PMC 3912882. PMID 24511547.
- 7. Ulbricht C, Abrams TR, Basch E, Davies-Heerema T, Foppa I, Hammerness P, Rusie E, Tanguay-Colucci S, Taylor S, Ulbricht C, Varghese M, Weissner W, Woods J (2011). "An evidence-based systematic review of gymnema (*Gymnema Sylvestre* R. Br.) by the Natural Standard Research Collaboration". Journal of Dietary Supplements. 8 (3): 311–30
- 8. Kurihara Y (1969). "Antisweet activity of gymnemic acid A1 and its derivatives". Life Sciences. 8 (9): 537–43. doi:10.1016/0024-3205(69)90449-4. PMID 5791706.
- 9. Gent JF, Hettinger TP, Frank ME, Marks LE (1999). "Taste confusions following gymnemic acid rinse". Chemical Senses. 24 (4): 393–403. doi:10.1093/chemse/24.4.393. PMID 10480675.
- Sanematsu K, Kusakabe Y, Shigemura N, Hirokawa T, Nakamura S, Imoto T, Ninomiya Y (September 2014). "Molecular mechanisms for sweet-suppressing effect of gymnemic acids". The Journal of Biological Chemistry. 289 (37): 25711–20. doi:10.1074/jbc.M114.560409. PMC 4162174. PMID 25056955.
- 11. Gardner Z, McGuffin M (2013). American Herbal Products Association's Botanical Safety Handbook, Second Edition. CRC Press. ISBN 978-1466516946.
- 12. Brala PM, Hagen RL (January 1983). "Effects of sweetness perception and caloric value of a preload on short term intake". Physiology & Behavior. 30 (1): 1–9. doi:10.1016/0031-9384(83)90030-6. PMID 6836034. S2CID 21639511.

- 13. Gardner Z, McGuffin M (2013). American Herbal Products Association's Botanical Safety Handbook, Second Edition. CRC Press. ISBN 978-1466516946.
- 14. Practical Pharmacognosy, Techniques and Experiments by Dr. K. R Khandelwal. 29th edition: April 2018.
- 15. Rajpal, Testing and extraction methods of medicinal herbs Vol. I, p. 140-150PHARMACOGNOSY 4. C. K. KOKATE.
 A. P PUROHIT. S. B. GOKHALE NIRALI PRAKASHAN Ahmed, A. B. A., Rao, A. S., & Rao, M. V. (2010).
- 16. Experimental Pharmacognosy, A
 Comprehensive Guide. By Dr, SS.
 Khadabadi. First edition may 2011.
- 17. Ahmed, A. Bakrudeen Ali, et al. "Different wavelengths light to induce physiological changes callus for the biosynthesis of gymnemic acid in *Gymnema Sylvestre*." Agro Food Industry Hi-Tech 23.3 (2012): 31-34.
- 18. Parveen, Shabana, et al. "Chromatography based metabolomics and in silico screening of *Gymnema Sylvestre* leaf extract for its antidiabetic potential." Evidence-Based Complementary and Alternative Medicine 2019.1 (2019): 7523159.
- 19. Thirunavukkarasu, K., et al. "GC-MS analysis of *Gymnema Sylvestre* leaves methanolic extract for antidiabetic and anticancer drug identification." Journal of Chemical and Pharmaceutical Sciences 9.2 (2016): 1011-1013.
- 20. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 332, 2-Methoxy-4-vinylphenol. Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/2-Methoxy-4-vinylphenol.
- 21. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 278584, 1,2,3,4-

- Cyclohexanetetrol. Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/ 1 2 3 4-Cyclohexanetetrol.
- 22. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 3043820, Phosphonothioic acid, methyl-, S-(2-(dimethylamino)ethyl) O- (2-methylpropyl) ester. Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/brn-1865854.
- 23. Prediction of Physicochemical Parameters by Atomic Contributions Scott A. Wildman and Gordon M. Crippen Journal of Chemical Information and Computer Sciences 1999 39 (5), 868-873 DOI: 10.1021/ci9903071
- 24. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 143175, 3,9-Dioxa-2,10-disilaundecane, 2,2,10,10-tetramethyl-. Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/trimethyl_5-trimethylsilyloxypentoxy_silane.
- 25. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 36247, 14-Methylpentadecanoic acid. Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/14-Methylpentadecanoic-acid.
- 26. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 985, Palmitic Acid. Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/Palmitic-Acid.
- National Center for Biotechnology
 Information (2025). PubChem Compound
 Summary for CID 10465, Heptadecanoic
 acid. Retrieved May 21, 2025 from

- https://pubchem.ncbi.nlm.nih.gov/compound/ Heptadecanoic-acid.
- 28. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 5280435, Phytol. Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/Phytol.
- 29. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 445639, Oleic Acid. Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/Oleic-Acid.
- 30. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 5281, Stearic Acid. Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/ Stearic-Acid.
- 31. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 1736267, 2H-Indol-2-one, 1,3-dihydro-1-(2,6-dichlorophenyl)-3-(((3hydroxypropyl)amino)methylene)-, (Z)-. 2025 Retrieved May 21, from https://pubchem.ncbi.nlm.nih.gov/compound/ 1736267.
- 32. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 145990586, (6aR,7R)-1,2-dimethoxy-5,6,6a,7-tetrahydro-4H-dibenzo[de,g]quinolin-7-ol. Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/145990586.
- 33. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 101102, 4-Hydroxyphenylbutazone. Retrieved May 21, 2025 from

- https://pubchem.ncbi.nlm.nih.gov/compound/4-Hydroxyphenylbutazone.
- 34. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 610161, 2-Ethylacridine. Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/2-Ethylacridine.
- 35. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 5365371, Erucamide. Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/Erucamide.
- 36. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 2306530, N-[3-(trifluoromethyl)phenyl]pyridine-2-carboxamide. Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/2306530.
- 37. National Center for Biotechnology Information (2025). PubChem Compound for **CID** 610038, 2,4,6-Summary Cycloheptatrien-1-one, 3,5-bis-trimethylsilyl-Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/ 610038.

- 38. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 14985, Alpha-Tocopherol. Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/Alpha-Tocopherol.
- 39. The National Institute of Standards and Technology webbook.nist.gov
- 40. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 73145, Beta-Amyrin. Retrieved May 21, 2025 from https://pubchem.ncbi.nlm.nih.gov/compound/Beta-Amyrin.
- 41. National Center for Biotechnology Information (2025). PubChem Compound Summary for CID 91746713, Urs-12-en-3-ol, acetate, (3beta)-. Retrieved May 21, 2025 from

https://pubchem.ncbi.nlm.nih.gov/compound/ Urs-12-en-3-ol-acetate-

3beta.https://www.sciencedirect.com/

HOW TO CITE: Swati Wakchoure, Akash Nalawade, Tejal Dingore, Dev Gaikwad, Leena Gharat, Kamini Ghavat, Extraction Isolation Phytochemical Screening and Analysis of Madhunashini (*Gymnema Sylvestre*), Int. J. of Pharm. Sci., 2025, Vol 3, Issue 8, 2484-2497. https://doi.org/10.5281/zenodo.16932631