

Review Paper

Formulation and Evaluation of Polyherbal Anti-Diabetic Tablet Dosage Form

Divya Lagad*, Rushali B, Nitin Gawai, Varsha Mallav, Tejas Shendkar

Mahadev Kanchan College of Pharmaceutical Education and Research, Uruli Kanchan

ARTICLE INFO

Published: 25 Nov 2025

Keywords:

Diabetes mellitus;
Prevalence; Public health;
Herbal medicine;
Alternative therapy

DOI:

10.5281/zenodo.17711476

ABSTRACT

In the present moment world, diabetes is one of the leading causes of death and the incident. There have become serious issues with diabetes as a result of factors like urbanization, aging, population growth, and rising instances of obesity and activity. According to the World Health Organization, there may be 7 million diabetics in India by 2025 because the disease is a normal occurrence for Indians. The rising prevalence of adult diabetes worldwide is one of the primary effects of public health.. The rate at which adult diabetes is accelerating is a global health concern in the area. The rapidly increasing rate of adult diabetes is a global health concern. As a result, there is a strong need for a robust treatment option with fewer side effects to manage this condition. Traditional diabetes has been successfully managed using a herbal-based medical approach.

INTRODUCTION

Over 100 million people globally are affected by diabetes mellitus (DM), making it the most common endocrine disorder. With an aging population, increasing obesity rates, and a decline in physical activity, more individuals are developing diabetes. India, being the second most populous nation in the world, has a significant number of type 2 diabetes cases, affecting individuals across all ages and backgrounds. According to current projections, 38 million adults (7.8% of the total population) are expected to have

diabetes by 2030. Stress, rapid urbanization, high levels of pressure, modern lifestyles, and poor community health are some of the factors contributing to this health crisis and the rise of the prevalence. Individuals with stable blood sugar levels are likely to experience better health outcomes, yet the annual cost of diabetes treatment and its associated complications exceed 100 billion dollars. Seed remedies found in traditional Indian healthcare systems incorporate various herbs, and Rasayana therapies have been utilized for over a thousand years. Current research

*Corresponding Author: Divya Lagad

Address: Mahadev Kanchan College of Pharmaceutical Education and Research, Uruli Kanchan

Email : lagaddivya5@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

primarily concentrates on plants and combinations of herbal medicine to address diabetes, a significant ailment that leads to substantial economic loss for humanity. Numerous herbs known for their potent anti-diabetic effects have been historically utilized in Ayurveda. Polyherbal approaches have been developed and examined for their potential anti-diabetic benefits. Various formulations of polyherbal components have been created, and their impacts are currently being evaluated.

ASPECTS

- 1) The product must be elegant, unique, and free from deformities such as chips, cracks, dirt, and contamination.
- 2) It should be robust enough to withstand significant impacts during work, packaging, transportation, and distribution processes.
- 3) It needs to be physically stable enough to retain its physical attributes over time.
- 4) Active substances or compounds must have the potential to be released in the body in a predictable and manageable way.
- 5) Chemical stability should be suitable over time to avoid degradation of the active substances or formulations.

ADVANTAGES:

- 1) As a unit dosage form, tablets offer the highest level of dosing accuracy and the least variability in content among all oral dosage forms.
- 2) They are cost-effective and easy to manufacture and package.
- 3) Economical.
- 4) More compact and lightweight.
- 5) They excel compared to all oral dosage forms in chemical and microbiological stability.
- 6) Suitable for large-scale production.

- 7) The least likely to become lodged and easy to swallow.
- 8) The coating process can mask unpleasant odors and tastes.
- 9) Enteric coating allows for a sustained release formulation

DRAWBACKS:

- 1) Young people and unconscious patients often find it hard to swallow.
- 2) Due to their low density and lack of form, many drugs cannot be compressed into solid tablets.
- 3) It can be difficult to formulate a tablet that achieves satisfactory overall bioavailability for medications that have poor wetting properties, moderate dissolution rates, and optimal absorption in the gastrointestinal tract.
- 4) Coating or encapsulation may be necessary for drugs that are sensitive to air, have an unpleasant smell, or are difficult to taste.
- 5) Some substances can irritate the gastrointestinal mucosa.

HOW DO HERBS MANAGE

The exact composition of most manufactured medications? Whole herbs contain multiple compounds, which likely work together to produce therapeutic effects. The quality of the herbs and the timing of their harvest, along with the conditions under which they grow, will influence their composition.

Gathering and Extracting Plant Materials

Combining and utilizing plant components from *Trigonella Foenum-Graecum*, *Momordica Charantia*, *Moringa Oleifera*, and *Syzygium Cumini*. The materials involved in this study have been gathered from various locations, dried,

ground into a powder, and then extracted using ethanol. Ethanol serves as the solvent in the Soxhlet extraction method to retrieve compounds from each powdered sample. The resulting solvent is collected, evaporated, and the extracts are stored for future use. The manufactured remedy should be used under the guidance of a qualified professional. Prior to beginning any treatment, it is essential to consult with your physician or a herbalist. Below, you will find a discussion about some common herbs and their uses. For more detailed information on applications, risks, side effects, and potential interactions, please refer to our expertise on specific herbs.

1. Name-Moringa oleifera

Role - decrease gluconeogenesis in liver, Increase insulin sensitivity

2. Name - momordica charantia

Role - Reduced Glucose Absorption, Reduced Insulin Resistance

3. Name -Syzygium cumini

Role - Regulation of Blood Glucose, Antioxidant and Antiglycation Properties

4. Name-Trigonella foenum-graecum

Role - Inhibition of α -Amylase and α -Glucosidase, Reducing Post-Prandial Glucose Levels

Excipients

Lactose, starch, calcium phosphate, acacia, aerosil, magnesium stearate, methyl paraben, and propyl paraben are the components used in the manufacturing of the tablets for this formulation. Aerosil and magnesium stearate serve the purpose of lubrication, while lactose and calcium phosphate function as bulking agents. Acacia and

starch act as granulating agents, and methyl and propyl paraben serve as preservatives.

Polyherbal Anti-Diabetic Tablet Formation

In this research, the tablets were developed through the wet granulation technique using dried ethanolic extracts from *Momordica charantia*, *Moringa oleifera*, *Trigonella foenum-graecum*, and *Syzygium cumini*.

Granule preparation using the wet granulation method

- The starch and preservatives were measured and combined to form an emulsion, which was then heated in a water bath until a clear semisolid mass was achieved.
- Separately, the required amount of water was used to prepare the acacia binding solution.
- After thoroughly blending the measured excipients with the extract, the boiled starch and acacia solution were incrementally added until the mixture reached the consistency of a wet mass.
- This damp blend was then passed through sieve number 16 and dried in an oven at 105°C until the granules were completely dry.
- Once dried, the granules were lubricated after being passed through sieve number 20.
- Aerosil and magnesium stearate were then thoroughly mixed and sieved through sieve number 40 before being combined with the dried granules.

ASSESSMENT

Predetermined considers

Preformulation ponders were performed some time recently defining the tablets powders were subjected to taking after assessment parameters.

Point of rest

Point of rest was decided by utilizing pipe method; in a pipe the precisely weighed mix was taken. The pipe stature was organized in a way that the pipe tip fair touches the “apex of the heap” or “head of blend”. Through the pipe “the medicate excipient blend” was permitted to stream unreservedly on to the surface. Table 2 appears the relationship between Point of Rest and Powder Stream. The breadth of the powder cone and point of rest were calculated by utilizing the taking after condition. $\tan \theta = h/r$ Where h = tallness of powder cone shaped r = span of the powder cone shaped.

Bulk density

By stream the signify compound into the ordering cylinder and expedient the volume, Weight of powder

Tapped bulk thickness

Tapped bulk thickness A known mass of medication excipient mix was set in a graduated barrel. The barrel was tapped on to a difficult surface from the tallness of 10 cm at two moment interim. Tapping was rehashed, “Until no encourage alter in volume was noted”.

Compressibility index

The mixed compacting index is determined by the CARR compression index. The compression index or CARR index is an meaningful means that can be obtained from thickness and mining. It is calculated according to the equation, CARR Index = (Safety density - mass density) / density. For substantial with more liquid, it must be less than. A material with a value of less than 20% with good flow properties.

Physical assessment of Tablets

Tablets were subjected to taking after assessment parameters.

Color and appearance

For the colour and appearance the tablets were outwardly inspected..

Weight variation test

For modify, 20 tablets, the average weight has been determined. particular, each tablet weight has been tested. In each case, the disagreement affiliated to the average weight has been calculated and expressed in the percentage. Not more than two of the sample tablets. Departs from the average weight of the higher percentage and no holds over are more than double the percentage.

Hardness and Friability test

Hardness and friability tests were conducted on the tablets utilizing a Strong – Cobb Tester and Pfizer Hardness Tester.

Thickness

Vernier calipers were used to measure the tablet thickness. The thicknesses were assessed.

Tablet disintegration test

A disk of rust-proof wire gauge is attached to the lower end of a glass tube that is 80–100 mm long, with an internal diameter of 28 mm and an external diameter of 30–31 mm. The tube was filled with six tablets, and it was elevated and lowered so that the entire up-and-down motion was repeated [28 to 32] once every minute. When there were no particles left above the gauge, the tablets broke up because they easily passed through a 10-mesh screen.

CONCLUSION

Because they are readily available, inexpensive, and have less adverse effects than allopathic medications, herbs are used extensively in

treatment. The antidiabetic therapeutic use of the plants chosen for the formulation and the research conducted on that basis were literally proven. The leaves of the four plants used in the study—*Momordica charantia*, *moringa oleifera*, *Trigonella foenum-graecum*, and *Syzygium cumini*—were extracted using ethanol, then used to make tablets. The tablets were then assessed for physical characteristics and standardized in accordance with pharmacopoeia standards. Physical parameters and the preformulation investigation showed that every value fell within an acceptable range. Significant antidiabetic activity was demonstrated by the polyherbal formulation, and the tablet standardized in accordance with Pharmacopoeia standards.

REFERENCE

1. Kala CP. Ethno medicinal botany of the Apatani in the Eastern Himalayan region of India. *J Ethnobiol Ethnomed*, 2005; 1(11): 1-8.
2. Grover JK and Vats V. Shifting Paradigm from conventional to alternate medicine. An introduction on traditional Indian medicine, *Asia Pacific Biotechnology News*, 2001
3. Malik JK, Thacker AM and Ahmed A. Ethnoveterinary medicine in western India, *Ethnoveterinary Research and Development*, Edited by Mc Corkle C, (Intermediate Technology Publication, UK), 1996; 148.
4. Kattamani KN, Munikrishnappa MP, Husain SA and Reddy PN. Use of plants as medicine under semi-arid tropical climate of Raichur district of North Karnataka, *J Med Aromat Pl Sci*, 2000; 22-23: 406-410.
5. Tripathi YC. Ethno medical treasure of tribal Rajasthan, *J Non Timbet Forest Product*, 2000; 7(1/2):77-84.
6. Mukherjee SK and Mukherjee S. Therapeutic advances in Diabetes mellitus through ages. *J Res Indian Med.*, 1966; 1-0: 9.
7. Mehta KC. Indian herbal drugs in the treatment of diabetes. *Current Med Pract*. 1982; 26(10): 305.
8. Aiman R. Recent research on indigenous antidiabetic medicinal plants an overall Assessment. *Indian J Physiol & Pharmacol*, 1970; 14(2): 65.
9. Chaudhury RR and Vohora SB. Plants with possible hypoglycemic activity in advances in Research in Indian Medicine Udupa KN, Chaturvedi GN and Tripathi SN (Eds) Banaras Hindu University, Varanasi (India), 1970; 57.
10. Karnick CR. Some aspects of crude Indian drugs plants used in Ayurvedic system of medicine (Madhumeha) (Dia betes). *Acta Phytother Amst.*, 1972; 19: 141.
11. Satyavati GV, Raina MK and Sharma M. Medicinal Plants of India, Indian Council of Medical Research, 1976; 1.
12. Mukherjee SK. Indigenous drugs in Diabetes mellitus. *J Diabetic Asso India*, 1981 12 Nagarajan S, Jain HC and Aulakh GS. Indigenous plants used in the control of Diabetes in Cultivation and Utilization of Medicinal Plants. *Jammu regional research laboratory*, 1982; 584-604.
13. Satyavati GV. Pharmacology of medicinal plants and other natural products in *Current Research in Pharmacology in India (1975-1982)*, Das PK and Dhawan BN (Eds), Indian National Science Academy New Delhi, 1984; 119-146.
14. Patnaik GK and Dhawan BN. Pharmacological studies on Indian Medicinal plants in *Current Research on Medicinal Plants in India*. Dhawan BN (Ed) Indian National Science Academy New Delhi, 1986; 45.

15. Das PK, Dasgupta G and Mishra AK. Clinical studies on Medicinal Plants of India in Current Research of Medicinal Plants in India. Dhawan BN (Ed), INSA New Delhi, 1987;2.
16. Kala CP. Ethno medicinal botany of the Apatani in the Eastern Himalayan region of IndiaJ Ethnobiol Ethnomed, 2005; 1(11): 1-8.
17. Grover JK and Vats V. Shifting Paradigm from conventional to alternate medicine. An introduction on traditional Indian medicine, Asia Pacific Biotechnology News, 2001
18. Malik JK, Thacker AM and Ahmed A. Ethnoveterinary medicine in western India, Ethnoveterinary Research and Development, Edited by Mc Corkle C, (Intermediate Technology Publication, UK), 1996; 148.
19. Kattamani KN, Munikrishnappa MP, Husain SA and Reddy PN. Use of plants as medicine under semi-arid tropical climate of Raichur district of North Karnataka, J Med Aromat Pl Sci, 2000; 22-23: 406-410.
20. Tripathi YC. Ethno medical treasure of tribal Rajasthan, J Non Timbet Forest Product, 2000; 7(1/2): 77-84.
21. Mukherjee SK and Mukherjee S. Therapeutic advances in Diabetes mellitus through ages. J Res Indian Med., 1966; 1-0: 9.
22. Mehta KC. Indian herbal drugs in the treatment of diabetes. Current Med Pract. 1982; 26(10): 305.
23. Aiman R. Recent research on indigenous antidiabetic medicinal plants an overall
24. Assessment. Indian J Physiol & Pharmacol, 1970; 14(2): 65.
25. Chaudhury RR and Vohora SB. Plants with possible hypoglycemic activity in advances in Research in Indian Medicine Udupa KN, Chaturvedi GN and Tripathi SN (Eds) Banaras Hindu University, Varanasi (India), 1970; 57.
26. Karnick CR. Some aspects of crude Indian drugs plants used in Ayurvedic system of medicine (Madhumeha) (Dia betes). Acta Phytother Amst., 1972; 19: 141.
27. Satyavati GV, Raina MK and Sharma M. Medicinal Plants of India, Indian Council of Medical Research, 1976; 1.
28. Mukherjee SK. Indigenous drugs in Diabetes mellitus. J Diabetic Asso India, 1981
29. Nagarajan S, Jain HC and Aulakh GS. Indigenous plants used in the control of Diabetes in Cultivation and Utilization of Medicinal Plants. Jammu regional research laboratory, 1982; 584-604.
30. Satyavati GV. Pharmacology of medicinal plants and other natural products in Current Research in Pharmacology in India (1975-1982), Das PK and Dhawan BN (Eds), Indian National Science Academy New Delhi, 1984; 119-146.
31. Patnaik GK and Dhawan BN. Pharmacological studies on Indian Medicinal plants in Current Research on Medicinal Plants in India. Dhawan BN (Ed) Indian National Science Academy New Delhi, 1986; 45.
32. Das PK, Dasgupta G and Mishra AK. Clinical studies on Medicinal Plants of India in Current Research of Medicinal Plants in India. Dhawan BN (Ed), INSA New Delhi,
33. Journal of Applied Pharmaceutical Science Vol. 10(07), pp 089-099, July, 2020 Available online at <http://www.japsonline.com> DOI: 10.7324/JAPS.2020.10712 ISSN 2231-3354

HOW TO CITE: Divya Lagad, Rushali B, Nitin Gawai, Varsha Mallav, Tejas Shendkar, Formulation and Evaluation of Polyherbal Anti-Diabetic Tablet Dosage Form, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 11, 3983-3988. <https://doi.org/10.5281/zenodo.17711476>

