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Finding new drugs takes a lot of effort and money. It often fails and drags on for years. 

New tools in AI and machine learning fix old problems like spotting targets, tweaking 

leads, and guessing toxic effects. Key methods now include Graph neural networks, 

GANs, VAEs, and LLMs. These fit right into drug making steps. They speed up checks, 

create molecules, and predict how drugs move in the body. Large pharmaceutical and 

biotech companies rely on AI and ML tools. These tools save time and select stronger 

drug candidates. Challenges remain with data quality, regulatory guidelines, and model 

transparency. Ethics and keeping data private need constant care. AI-led drug discovery 

will grow with clear and multi-type methods. These boost teamwork between people 

and machines. They build trust and make results reliable. Overall, AI and ML change 

drug discovery. They bring quicker, safer, and cheaper treatments for health problems 

worldwide.  
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INTRODUCTION 

❖ The Challenges in Drug Discovery : 

Drug discovery is one of the toughest and 

expensive tasks in modern science. Even with 

major tech improvements, the drug field still hits 

many roadblocks. These slow down the quick 

creation of new medicines. The price tag for 

finding new drugs stays huge. It costs 

approximately $2.5 to $2.6 billion to develop a 

new drug. That makes it the priciest type of 

research in any field. The high cost comes from the 

tough process and the high chance of failure in 

drug work.(1)(2) 

Drug development usually takes 10 to 15 years. 

This spans from the first find to approval for sale. 

Such a long wait slows down returns on 

investment. It can also cut the useful time left on 

patents for the new drug.(1)(2) Just 13% of drugs 

that start clinical trials gain approval from 

regulators. This low success rate drives up the total 

costs of development.(1) Standard drug discovery 

methods often use trial-and-error steps based on 

guesswork. These steps have low power to predict 
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outcomes. This shows the clear need for better 

ways to find drugs.(3) A main problem lies in 

finding and proving drug targets. This task grows 

hard due to gaps in our grasp of disease cause and 

tricky links between proteins.(1) 

AI possesses the capacity for transformative 

change; however, it also presents challenges such 

as the "black box" issue, wherein the decision-

making processes lack transparency, thereby 

complicating regulatory acceptance.(3) 

(4)Furthermore, bias present in training datasets 

can adversely affect the accuracy of AI, 

necessitating extensive validation to confirm the 

reliability of AI models across diverse 

populations.(3) 

The ethical dilemmas associated with clinical 

trials, the equitable distribution of new therapies, 

and concerns regarding intellectual property 

complicate the drug discovery process, 

particularly for diseases that affect small patient 

populations.(3) Striking a balance between 

incentivizing innovation and ensuring broad 

accessibility continues to pose a significant social 

and ethical challenge.(3) 

❖ The Rise Of AI and ML in Biomedicine : 

The growth of artificial intelligence (AI) and 

machine learning (ML) in biomedicine brings big 

changes. It affects drug discovery and 

development the most. AI tools, like those that 

create new ideas, speed up the process. They help 

find targets, design molecules, and improve them. 

These steps used to take a lot of time and money. 

AI learns from old chemical and biological data. It 

makes new drug options. This speeds up new 

treatments. (5) 

Clear AI methods matter a lot in biomedicine. 

They show how predictions or choices happen. 

This lets doctors and researchers see the reasons. 

Trust counts in health care. So does being 

responsible. Tools like gradient saliency maps and 

class activation mapping show key features. They 

give clear views of tough biomedical data. This 

helps with better choices in clinics. (6) 

ML tools work well in early drug stages. They 

guess biological effects. They improve lead 

compounds. They also boost trial results. Models 

with graph neural networks and transformers do 

better than the old ways. They are more accurate 

and quicker. This supports care made for each 

person. (7) AI also helps repurposing of drugs. It 

cuts costs by finding fresh uses for old ones. It 

speeds up screening compounds and spotting 

toxicity. (8) 

Problems still exist. Data can be poor. Rules are 

hard to meet. Models are tough to explain. Yet AI 

and ML in biomedicine can change treatment 

making. It will go faster and cost less. It fits each 

patient's needs. (9) (5) (6) (7) (8)   

❖ Definitions and Scope : 

Machine learning, or ML, means computer 

programs that let systems learn and get better on 

their own. They spot patterns in big sets of data. In 

biomedicine, this helps predict traits, sort biology 

info, and speed up analysis tasks. (6) Deep 

learning, or DL, is part of ML. It relies on layered 

fake neural networks. These handle tough, detailed 

data like gene codes or molecule shapes. This 

leads to better feature pulls and sharp guesses in 

areas such as drug trait forecasts and image 

spotting. (10) (11) 

Generative AI, or GenAI, covers smart AI tools 

that make fresh data like real ones. Models like 

generative adversarial networks (GANs), 

variational autoencoders (VAEs), and large 

language models (LLMs) play a bigger role in 

biomedicine. They craft new molecule builds, plan 
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drug options, and explain biology sequences. (12) 

(10) GANs work by putting two networks against 

each other, a creator and a checker to boost fake 

data quality. VAEs turn molecule traits into codes 

for true-to-life changes. LLMs use deep network 

setups like transformers. They produce clear 

biology or chemistry sequences. They also aid in 

forming new ideas. (10).  

De novo design programs can create entirely new 

drug molecules by predicting what shapes and 

chemical structures might best fit a biological 

target. AI helps clinical tests, too. It picks patients 

with guess models, runs fake trials, and checks 

mixed biology data. This boosts trial speed and 

result forecasts. (11) (10)(6) Such tools aim to 

push exact medicine forward, raise drug discovery 

rates, and change how research works in clinics. 

(11)(6) 

1. CORE TECHNOLOGIES 

❖ Traditional ML and Deep Learning : 

‘Support Vector Machines’ (SVMs) and ‘Random 

Forests’ serve as key tools in Quantitative 

Structure-Activity Relationship (QSAR) modeling 

and virtual screening for drug discovery. SVMs 

stand out by spotting active compounds versus 

inactive ones. They do this through the best 

dividing line in a high dimensional space of 

chemical traits. This gives strong, consistent 

results in arranging and sorting data. (1) ‘Random 

Forests’, by contrast, create groups of decision 

trees. These handle tough chemical data sets well. 

They manage high changes and linked traits for 

sorting and prediction tasks in QSAR work.(1) (3) 

Deep learning (DL) boosts QSAR modeling even 

more. Neural networks like ‘Auto-Encoders’ or 

deep feed-forward types capture complex curved 

links in molecule data. (11) DL methods show 

better detail and accuracy in guessing protein-

protein links and quick virtual screens than 

standard ML tools. (1) For instance, deep neural 

networks and graph networks predict ADMET 

traits, absorption, distribution, metabolism, 

excretion, toxicity and other bio activities with 

great skill. They spot patterns in molecule graphs 

or chains. (11) 

Today's drug development paths mix classic ML 

with DL to boost prediction power and clarity. 

SVMs and Random Forests shine for quick, easy-

to-grasp guesses in early checks. Deep learning 

leads on big data sets with full notes and fine trait 

pulls needed for lead tweaks and risk checks. (4) 

(11) (1) (3)  

❖ Graph Neural Networks 

‘Graph neural networks’, or GNNs, serve as key 

tools in today's drug discovery. They model 

molecules as graphs. Atoms act as nodes, and 

bonds serve as edges. (13) (14) This method 

mirrors the real shape and links in molecules. It 

lets GNNs grasp connections and interactions vital 

for spotting molecular traits. 

GNNs shine in tasks like forecasting binding 

strength, toxicity, and solubility. (13)(14) (15) 

They pull data from nearby nodes step by step. 

This builds strong views of the graph that show 

local and broad chemical settings. Take 

‘GNNSeq’, a GNN based on sequences. It shows 

strong results and wide use in spotting protein-

ligand links. It works on big, varied data sets. This 

aids quick virtual screens and early drug steps. 

(15) 

GNNs also help create new molecules with needed 

traits, beyond just forecasts. (14) (16) Tools built 

on GNNs learn to make valid chemical forms 

tuned for biology or drug body effects. These 

setups often mix with reward learning or 

autoencoders. They aid fresh drug builds and lead 
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tweaks. (14) (16) GNNs also predict drug clashes 

and build health knowledge graphs. This widens 

their role in drug pipelines (16) (13) 

New geometric GNN designs now handle 3D 

shapes and forms. This boosts truth in forecasts 

and creations. (14) (13) In all, GNNs' skill at 

mapping tough molecular setups makes them key 

for forecasts, builds, and finds in AI drug work. 

(14) (13) (16) (15). 

❖ Generative AI Models 

Generative AI, stands out as a key tool in creating 

new drugs from scratch. It helps build fresh 

chemical forms with needed biology and body-

processing traits. The top models here are 

‘Generative Adversarial Networks’, called GANs, 

and ‘Variational Auto-Encoders’, known as 

VAEs. Both learn deep patterns in molecules. 

They also make new compounds that go past 

known chemical sets.(17,18) 

GANs work via a contest setup. A generator makes 

new molecule ideas. A checker tests if they fit 

rules. Over many rounds of training, this boosts the 

quality of designs. (19) In drug hunts, these GANs 

create SMILES codes or graph forms for 

molecules. They follow chemistry laws and 

improve traits like binding strength, fat-liking, and 

ease of making. (20) Special conditional GANs 

add molecule details or activity data. This guides 

the output toward set drug effects. (21) 

VAEs differ by using chance-based code-and-

decode steps. They turn molecules into a smooth 

hidden area. This lets easy pulls and blends 

between. (22) Exploring this area aids tweaks for 

goals like strength, dissolve rate, and body safety 

traits. Adding reward learning and stats-based 

tweaks raises VAEs' skill at making valid, useful 

chemicals. (23) 

New work blends VAE and GAN setups. It mixes 

VAEs' steady nature with GANs' real-look output. 

This fixes issues like limited variety and boosts 

diverse builds. (18) Such blends have shown real 

wins. They create drug-ready molecules with good 

fit scores. Some even prove hits in tests for cancer 

and brain decline paths. GANs and VAEs lead the 

way in fresh molecule building. They speed up 

early drug steps with smart, auto chemical ideas. 

(17) 

❖ LLMs and Protein Modeling 

Large language models (LLMs) and tools like 

‘AlphaFold’ change biomedical research. They 

improve data analysis, knowledge pull, and 

structure forecasts. LLMs learn from huge sets of 

science texts, medical records, and biology notes. 

They grasp context. They find key facts. They link 

scattered biochemistry info for smart drug and 

protein design.(24) NLP methods let LLMs scan 

papers for protein links, disease ties, and drug-

target pairs. This speeds up idea creation and aids 

fact-based discovery steps. (25) 

New LLMs like ‘BioGPT’, ‘PubMedBERT’, and 

‘Galactica excel’ at digging through biomedical 

texts. They spot process patterns that old search 

tools missed. (26) These models link biology items 

on their own. They pull protein-role ties. They help 

study pathways. Adding LLMs to full biology data 

flows updates protein banks in real time. It 

connects sources like Universal Protein Resource, 

Protein Data Bank, and trial data. These steps 

boost the grasp of protein actions, fold changes, 

and mutation effects in various diseases. (27) 

AlphaFold pairs well with LLMs. It brings big 

advances in protein shape prediction. Deep neural 

nets train on evolution rules, physics basics, and 

shape math. (28)AlphaFold predicts 3D protein 

forms from amino acid lists with near-lab 

precision. It reveals active spots, shape shifts, and 
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molecular bonds. Linking it to LLM systems ties 

sequence notes to shape details. This ranks drug 

targets and explains variant effects at the molecule 

scale. (29) 

LLMs and AlphaFold start a fresh time in AI-aided 

protein work. Text insights and shape models team 

up. They sharpen biology knowledge. They 

forecast mutation outcomes. They quicken drug 

design aimed at proteins. (24) (28) 

❖ Explainable AI 

Explainable AI, or XAI, builds trust, openness, 

and responsibility in drug discovery processes. It 

makes sure predictive models give right results 

and clear reasons people can grasp for key choices. 

In pharma work, AI tools like deep learning face 

heat as black boxes. Scientists can't see how they 

make choices. XAI fixes this with visual, text, or 

feature breakdowns. These show why a molecule, 

protein target, or dose got picked. (30) 

XAI, fits into drug development pipelines that use 

chemical and biological methods. It picks out 

molecular features that influence predictions of 

activity. These include functional groups, 3D 

structures, and simple traits. Methods like SHAP 

values, LIME approaches, and attention systems 

reveal the main factors. 

These include atom kinds, binding spots, or drug 

safety traits. They show what sways model results 

most. Chemists then check these against known 

drug rules. This cuts risks from false leads. (31) 

New work pushes full systems that link prediction 

to after the fact checks. They let users trace choices 

through step by step logic. Teams use them in 

QSAR, virtual hunts, and toxin checks. Here, 

grasping the model's thinking shapes which 

compounds get tested and ranked.(32) 

For rules and fair AI use, clear views matter a lot. 

Groups and experts need explained results to back 

safety and effect claims. XAI helps speed up 

approvals. It also aids teamwork between data pros 

and biology experts. This links math guesses to 

real bio sense. (33) 

Fresh ideas mix graph networks with clear add-

ons. They uncover ties between molecule parts and 

drug effects. Such links help grasp structure-

function ideas. They steer making of new drugs 

and spot how they work. This sparks fresh 

treatment plans. (34) 

In all, XAI turns tough model results into useful 

science facts. It boosts openness, repeat tests, and 

smart choices. From finding hits to final tweaks in 

drug work, XAI matches computer tips with lab 

proof and drug sense. (30) (31) 

2. APPLICATIONS ACROSS THE 

PIPELINE: 

❖ Target Identification & Validation: 

o Predictive Target Discovery: Machine 

learning models examine large sets of genomic 

and proteomic data. They spot genes and 

proteins linked to disease processes. This 

boosts the search for new targets. (35) 

o Pattern Recognition in Omics Data: AI tools 

find weak links in transcriptomic and 

proteomic data. These links reveal hidden ties 

between molecules. They help rank potential 

targets. (36) 

o Generative AI for Novel Target Prediction: 

Models like GANs and VAEs create fake 

biological networks. They produce possible 

biomolecular patterns. This aids in suggesting 

fresh disease targets. (37) 

https://pubmed.ncbi.nlm.nih.gov/40208836/
https://pubmed.ncbi.nlm.nih.gov/40208836/
https://pubmed.ncbi.nlm.nih.gov/37105727/
https://pubmed.ncbi.nlm.nih.gov/37105727/
https://pubmed.ncbi.nlm.nih.gov/40458811/
https://pubmed.ncbi.nlm.nih.gov/40458811/
https://pubmed.ncbi.nlm.nih.gov/34066072/
https://pubmed.ncbi.nlm.nih.gov/34066072/


Gaurav Palsamkar, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 11, 3061-3082| Review 

                 

              INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES                                                                                 3066 | P a g e  

o Integrated Genomic-Proteomic Target 

Mapping: Machine learning combines 

genomic and proteomic traits. It pinpoints key 

spots in molecular networks that cause disease. 

This refines the list of target candidates. (38) 

o Supervised Learning for Gene-Target 

Interaction Prediction: Supervised machine 

learning uses past target-disease info to train. 

It forecasts new useful targets. This works well 

for tough illnesses like cancer and brain decay. 

(39) 

o Network-Based Target Selection: Graph 

neural networks map protein interactions. 

Advanced machine learning spots key or 

strong targets in disease paths. (36) 

o Domain Adaptation for Cross-Dataset 

Generalization: AI applies domain shifts to 

match data from varied omics and patient 

records. This makes target forecasts more 

reliable across sources. (11) 

o Multimodal AI for Target Validation: 

Multimodal systems blend genomic, 

transcriptomic, proteomic, image, and patient 

data. They offer full views on a target's role in 

function. (40) 

o Clinical Relevance Assessment: AI validation 

checks a target's real-world use. It predicts trial 

results or patient reactions before tests start. 

(40) 

o Simulation of Biological Pathways: 

Generative AI builds mock disease networks. 

It tests cell reactions to changes. This allows 

virtual checks of drug target ideas. (37) 

o Automated Prioritization of Drug Targets: 

Machine learning systems score targets using 

molecular, trait, and patient data. They pick the 

best paths for treatment. (36) 

❖ Hit Discovery & Virtual Screening: 

o ML-Based Scoring Boost: Machine learning 

swaps out old docking scores. It learns from 

big sets of test data on affinities. This predicts 

how ligands bind to targets better. (41) 

o Fast Virtual Screening: ML tools scan millions 

of compounds quickly. They guess binding 

strengths and poses with more speed and 

accuracy. (42) 

o Quick Hit Finding: GenAI, GNNs, and ML 

scores team up. They find strong hits fast with 

real bio fit and fewer errors. (42) 

o AI for New Molecule Creation: Models like 

GANs and VAEs build fresh chemical shapes 

for set targets. Then ML checks them for drug 

traits and effects. (43) 

o GNNs for New Hit Making: GNNs in AI 

generators create molecules shaped for target 

pockets. (43) 

o Learning to Improve Molecules: 

Reinforcement learning tweaks structures step 

by step. It balances binding strength, body 

processing, and low harm. (39) 

o Mixing ML with Quantum Data: ML pairs 

with quantum details to better guess docking 

spots and energies. It links data methods to 

physics rules. (44) 

o Scores That Work Widely: Deep learning 

scores train on varied targets. They deliver 

strong screening results across protein groups. 

(45) 

o GNNs in Docking Tasks: GNNs show 

molecules as graphs of atoms and bonds. They 

spot key space and electron traits for binding 

guesses. (46) 
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o AI Pipelines for Re-Scoring: Transformer or 

GNN AI models polish docking outputs. They 

sharpen affinity guesses and order accuracy. 

(46) 

o GNNs Improve Scores: GNNs added to 

docking steps predict binding energies and 

ranks more right than old ways. (47) 

o GNNs Refine Docking Results: Docking 

outputs link with GNN hidden traits. This cuts 

wrong hits and drops weak poses.  (48) 

o Better Target Choice: ML-GNN score mixes 

spot picky binders. They blend chem details 

with shape limits. (48) 

o Maps of Protein-Ligand Touches: GNNs use 

contact maps to track close interactions at the 

site. They make predictions easier to grasp. 

(49) 

❖ De Novo Molecule Generation: 

o VAEs for Property-Guided Molecule 

Creation: Variational autoencoders build 

smooth hidden models of molecules. They 

help create fresh compounds with key traits, 

such as drug-like features and biological 

effects. This happens by drawing samples from 

the hidden space.(50) 

o Graph VAEs to Boost Structural Variety: 

These VAEs rely on graph formats to grasp 

how atoms connect and their shapes. They 

yield new compounds that chemists can make 

and that offer fresh structures for drug hunts. 

(51) 

o GANs Bring New Ideas to Chemical Building: 

Generative adversarial networks craft novel 

molecule forms. A builder competes with a 

checker, which sparks bold, drug-ready 

molecules outside the range of known data 

sets. (52,53) 

o GANs for Libraries Aimed at Specific Targets: 

These networks shape compound sets for 

certain biology goals. They fine-tune outputs 

with special rewards or loss terms to raise 

success in computer-based screens. (54) 

o Reinforcement Learning for Targeted 

Molecule Building: RL systems tweak or 

assemble molecules step by step. They chase 

top scores tied to traits like strength, ease of 

making, or mixed goals to fit tough treatment 

demands. (52,55) 

o RL for Balancing Multiple Goals: These RL 

setups pair with trait forecasters. They adjust 

molecules at once for strength, safety, and 

body handling to meet strict needs for drug 

picks. (55) 

o Blending Generative Tools in Work Flows: 

VAEs, GANs, and RL team up for making, 

picking, and refining molecule hopefuls. They 

speed up finds and add fresh chemical ideas. 

(51,54) 

o Quick Scans of Chemical Options: These 

methods open up huge chemical realms. They 

spot new compounds that old screen ways 

would miss. (54) 

o Ease of Making and Live Input: New pipelines 

add rules for buildable compounds. They draw 

from screen feedback to sharpen outputs for 

drug fit and growth promise. (53) 

o Promise for Custom and Hard Targets: Better 

data and smarter AI let these models aid 

tailored drugs. They probe tough health zones 

and push forward exact treatments. (56) 

❖ Lead Optimization: 

https://pubmed.ncbi.nlm.nih.gov/41030805/
https://pmc.ncbi.nlm.nih.gov/articles/PMC9581034/
https://pubmed.ncbi.nlm.nih.gov/32228116/
https://pubmed.ncbi.nlm.nih.gov/35128926/
https://pubmed.ncbi.nlm.nih.gov/34731474/
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o Graph-Based Scaffold Changes: Generative 

AI applies graph neural networks to turn 

molecular structures into graphs. It suggests 

changes to scaffolds. These boost potency, 

selectivity, and bioactivity. The AI draws on 

patterns from chemical data.(57,58) 

o Forecasting Bioisosteric Swaps: Models built 

on graphs propose new bioisosteres. They also 

suggest tweaks to functional groups. This 

raises metabolic stability and permeability. 

Target binding stays strong. (58) 

o Balancing Multiple ADMET Traits: Machine 

learning tools adjust several ADMET features 

at once. These include solubility, toxicity, and 

metabolic stability. The process happens as 

molecules form. It weighs drug strength 

against safety risks. (59,60) 

o Adding Synthetic Ease: Generative models 

build in rules for real-world making. This 

ensures molecules work well in tests. They 

also prove easy to create in labs.(59) 

o Active Learning from Lab Results: AI runs 

loops of design steps. It creates candidates for 

synthesis. Teams test them in labs. Results 

feed back to sharpen the model's guesses and 

designs. (61) 

o Modeling Structure-Activity and Structure-

Property Links: Graph neural networks map 

out tricky SAR and SPR ties. They spot odd 

scaffold shifts. These enhance ADMET traits. 

Drug activity holds firm.(62) 

o Cutting Time in Lead Optimization: AI guides 

scaffold work and ADMET forecasts. This 

speeds the shift from hits to clinical leads. It 

cuts down on random lab trials.(57) 

o Better Odds in Drug Creation: Tuned 

candidates display stronger safety and drug 

movement in the body. This lowers failure 

rates in late preclinical work. (57,58) 

o Data-Guided Molecular Tweaks: Models use 

big sets of chemical and drug data. They 

predict effects of structure changes with strong 

accuracy. This helps chemists plan smart 

designs.(60) 

o Coming Ties to Clear AI: Gains in explainable 

AI will clarify model choices in optimization. 

This builds trust. It spurs use in drug 

research.(61) 

❖ Predictive Toxicology & ADMET: 

o Deep Learning for Toxicity Prediction: 

Models based on deep learning, like graph 

neural networks, use big sets of labeled data to 

spot liver damage, heart risks, gene harm, and 

other bad effects. This flags risky compounds 

early. (63,64) 

o Multi-Task Checks for ADMET: Frameworks 

for multi-task learning test several drug traits 

at once. They look at how stable drugs stay, 

how well they pass barriers, and side effects. 

This speeds up picking leads.(62) 

o Molecular Graphs for Better Views: Models 

use graphs of molecules to show atom links 

and electron flows. These explain ADMET 

traits better than old methods. (65) 

o AI Generation to Boost Safety: AI tools create 

and tweak new molecules. They focus on 

better safety and ADMET by studying toxicity 

and drug movement data.(66,67) 

o Refining with Reinforcement Learning: These 

learning setups tweak molecules step by step. 

They reward good ADMET traits and punish 

toxicity. (68) 
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o Clear AI for Risk Insights: Methods like 

attention tools and feature maps point out 

molecule parts that cause toxicity. This builds 

trust and understanding. (69,70) 

o Aiming Fixes at Molecules: Clear AI spots bad 

groups in molecules that lead to toxicity or 

breakdown issues. This guides smart changes 

to cut risks. (71) 

o Fast Checks on Safety: AI screens thousands 

of similar compounds quickly for toxicity and 

ADMET. It cuts expensive failures late in 

tests. (63,65)  

o Better Rules Followed: Clear AI risk checks 

help with approvals. It matches computer 

forecasts to expert checks. (68,69) 

o Smarter Choices Before Trials: Toxicity and 

ADMET forecasts spot unsafe drugs early. 

They drop them fast, save resources, and aid 

patient safety. (64,66) 

❖ Protein Therapeutics & Antibodies 

o AI Tools for Finding New Antibodies: Tools 

from AION Labs and DenovAI rely on deep 

learning. They craft new antibodies with better 

binding strength, easier development, and less 

risk of immune reactions. This comes from 

studying sequence, shape, and function data. 

(72,73) 

o Going Past Natural Antibody Sets: Models that 

generate designs create antibodies with fresh 

binding parts and bases. This boosts the range 

of drug options beyond what nature provides. 

(74) 

o Cutting Time and Cost in Development: AI-

based design speeds up antibody creation. It 

beats old lab methods like hybridoma or phage 

display. (75) 

o Spot-On Predictions of Protein Shapes with 

AlphaFold: AlphaFold figures out 3D protein 

forms from amino acid lists. It does this with 

great precision. The results give key shape 

details for drug protein work. (76) 

o Blending Shape Predictions with Design 

Models: AlphaFold's shape forecasts pair with 

AI generators. Together, they build proteins 

that hold up better, bind stronger, and last 

longer in the body. (77,78) 

o Building Proteins from Scratch: AI generators 

make new enzymes, frames, and drug proteins. 

They tailor these for exact chemical tasks. The 

process uses sequence-to-shape maps and 

reward-based learning. (74) 

o Tailored Changes to Antibodies: AI helps 

tweak antibody parts that vary or stay constant. 

Changes boost their power, lifespan, and 

control over immune effects. (73) 

o Faster Path for Biologic Drugs: AI trims the 

wait from finding targets to picking 

candidates. It cuts down on wide lab tests. (72) 

o New Types of Drug Options: AI design aids 

fresh biologics. These include dual-target 

antibodies, drug-linked antibodies, and custom 

protein frames.(75) 

o Solid Bases for Protein Tweaks: AlphaFold's 

exact shapes offer sure starting points. They 

guide more changes and AI edits.(77) 

3. INDUSTRIAL LANDSCAPE & CASE 

STUDIES: 

Generative AI and machine learning have quickly 

changed drug discovery in the industry. They alter 

the way drug firms spot, build, and refine potential 

drugs. These tools blend computer models, auto 

processes, and data review to speed up a process 
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that used to take a long time and cost a lot. Drug 

companies around the world now use AI-based 

steps to gain edges in picking targets, shaping 

molecules, and early checks.(79,80) 

 

❖ Evolving Industrial Landscape:  

Drug and biotech firms have added generative AI 

tools into their research work to fix main problems 

in old drug finding methods. These setups can scan 

huge chemical areas, guess how molecules act, and 

make compounds with good drug effects. (79) Top 

groups like Insilico Medicine, Exscientia, 

Recursion Pharmaceuticals, and BenevolentAI 

apply AI creation models to speed up drug line 

building and choices. (80) 

Big drug firms such as Pfizer, AstraZeneca, and 

Novartis have formed key ties with AI start-ups. 

They use machine learning to create compounds, 

predict harm, and model how structures link to 

actions. For example, team efforts with cloud AI 

systems now allow quick making and fixing of 

drug options in areas like cancer, brain diseases, 

and body function issues. (2) 

The use of creation models—like variational 

autoencoders (VAEs), generative adversarial 

networks (GANs), and diffusion models—lets 

scientists make new compounds with needed 

physical traits. This cuts down on lab tests. Such 

methods allow joint goal fixing to match strength, 

choice, and safety in drug building. (81) 

❖ Impactful Case Studies in the Industry:  

o A strong example comes from Insilico 

Medicine's AI-discovered drug for fibrosis, 

INS018_055( Investigational drug name 

for Rentosertib, a small-molecule inhibitor 

designed using generative AI to treat 

idiopathic pulmonary fibrosis). It has advanced 

to Phase II trials. This proves AI generative 

models can develop drugs ready for clinical 

tests in months, not years.(82) 

o Exscientia has pushed forward with AI in drug 

building. They made DSP-1181 for obsessive-

compulsive issues with reward learning and 

active learning tools. These AI-built drugs 

started early clinic checks with much shorter 

find times. (83) 

o BenevolentAI’s system uses text processing 

and graph machine learning to find new links 

between diseases and targets. It helps pick 

usable targets. This method helped shift old 

drugs for COVID-19 use. It shows AI’s range 

in quick drug finding. (84) 

o Recursion Pharmaceuticals maps cell reactions 

on a large scale with image phenomics and 

machine learning. Their setup joins auto 

microscopes and creation models. This has led 

to new paths for rare gene diseases and 

swelling issues. (85) 

❖ Industry Advancement and Future 

Directions: 

AI mixed with lab auto tools, cloud systems, and 

fast screens has set a new way for drug finding in 

the field. Firms now take mixed paths that join 

generative AI with robots and chip labs. These 

allow self-run cycles of design, build, and test to 

fix molecules right away. (86) 

Looking ahead, the focus shifts to transparent AI 

that builds trust and follows rules in design 

processes. Shared learning platforms will enable 

secure, private collaboration between pharma 

partners. As AI in drug discovery expands, it will 

transform drug development into faster paths to 

safer, more effective treatments. (2,79–81,85,86) 
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4. BENEFITS, CHALLENGES & 

LIMITATIONS: 

❖ Benefits: 

o Finding and Checking Targets: Machine 

learning combines various data types from 

biology. It reveals new targets and checks links 

between drugs and diseases. This aids tough or 

rare conditions most. [87], (87) 

o Better Prediction Power: Deep learning tools 

forecast how drugs bind, their body effects, 

and risks with more detail. This cuts losses in 

late drug stages. (88) 

o Clear Insights from Explainable AI: Tools that 

explain AI show how results form. They build 

faith among chemists and rule makers.(89) 

o Lower Costs and Faster Times: AI cuts need 

for pricey lab tests and mass screens. It 

shortens drug timelines and expenses a lot. 

(90) 

o Balancing Many Goals: AI tunes several drug 

traits at once. It matches strength, safety, and 

body handling well. (89) 

o Aid for Custom Treatments: AI tools shape 

therapies for single patients. They blend clinic 

notes and gene data. (91) 

❖ Challenges: 

o Data Quality and Access: AI needs big, mixed, 

clean data sets. Short, slanted, or locked data 

harms model reach and truth. (92) 

o Repeatability and Set Rules: No standard ways 

to check models or make molecules block 

repeats across tools and steps. (93) 

o Problems with Clarity: Most deep models hide 

their work. This slows uptake since reasons for 

outputs stay vague. (88) 

o Fitting into Current Steps: Adding AI to drug 

flows demands skill training, tech setup, and 

team shifts. These pose real blocks. (3) 

o High Compute Needs: Deep models demand 

lots of power and space. This strains small 

groups most. (94) 

o Privacy and Moral Issues with Data: Sharing 

key clinic and gene info for AI training sparks 

privacy and rule worries. Strong rules must 

guide it. (94) 

o Rule-Making Barriers: AI-created drugs face 

unclear approval routes. Safety, potency, and 

patent reviews spark problems.(87) 

o Fitting Too Close to Data and Wide Use: 

Models may cling to train data. This harms 

work on new chemicals or biology setups.(88) 

o Spreading Slants: Data slants carry over or 

grow in AI. This may miss small groups or odd 

traits.(92) 

❖ Limitation: 

o Blocks from Size and Reach: Steep costs and 

skill needs curb wide use. Small labs often 

miss full gains.(94) 

o Unclear Rights to Ideas: AI-generated 

molecules rise patent laws. This creates doubt 

about who owns machine-generated 

molecules.(87) 

o Need for Real Tests: AI guesses still demand 

full lab checks. This stresses mixed human-AI 

approaches.(88) 
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o Right Use of AI: AI choices in drugs must fit 

moral rules. They prevent harm or unfair care 

access.(3) 

o Handling Open Data: Strict guidelines and 

patient consent, ensure proper use of clinical 

data in AI drug development.(94) 

5. FUTURE DIRECTIONS: 

❖ Future Directions of Generative AI and 

Machine Learning in Drug Discovery 

Generative AI and machine learning change drug 

discovery. They boost the pace and success of new 

treatments. Main paths ahead cover clear AI and 

cause-based AI. They include mixed AI systems 

that blend biology data types. Better teamwork 

between people and AI comes with special 

training. AI also runs the full drug discovery 

process. This includes new types of 

treatments.(95,96) 

❖ Explainability and Causal AI 

AI tools in drug discovery act like hidden boxes. 

Clear AI keeps decisions open and simple to 

follow It fits needs in drug work. Cause-based AI 

goes further. It spots real cause and effect links, 

not just links. This adds firm science and better fit 

for tough biology. For one, mixing clear AI with 

cause tools raises trust in poison forecasts and 

target finds. It aids rules follow-through.(95–97) 

❖ Multimodal AI Pipelines Integrating Omics, 

Imaging, and Literature 

Next steps in AI drug work stress blending varied 

data. This covers gene sets, cell messages, protein 

info (all gene data), body scans, and paper digs. 

Mixed AI setups that check these together reveal 

deep biology ties. One-type data misses these. 

Take gene data plus cell scans and paper facts. 

They sharpen trait details, check targets, and rank 

picks. This speeds full system grasp. It helps craft 

better compounds with molecule views, cell acts, 

and patient factors.(98–100) 

❖ Stronger Human–AI Collaboration and 

Training Programs 

Human skills and knowledge remain vital in drug 

production. It aids idea starts, process grasps, and 

right choices. Ahead lies AI built for smooth work 

with scientists. It gives clear ideas, hands-on 

tweaks, and reply loops. With these tech steps, set 

training raises AI skills in workers. This builds 

good match between people and AI. It lifts choice 

quality. It speeds drug flows by using both sides' 

strong points.(101,102) 

6. CONCLUSION: 

Generative AI and machine learning change every 

step in the drug discovery process. They cover 

target identification and validation. They also 

include hit discovery, lead optimization, predictive 

toxicology, and clinical trial design. These tools 

help search huge chemical areas. They speed up 

creating new molecules. They predict drug 

properties with better accuracy. In this way, they 

fix many problems in old drug discovery ways. 

Early wins show AI can cut development time. It 

lowers costs too. It raises chances of success in 

trials. This comes from better, data-based choices. 

Still, big hurdles exist. Data quality, access, and 

standards hold back AI models. Models lack broad 

use and strength. The hidden inner workings of 

deep learning create doubt. Regulators and doctors 

find it hard to trust. Clear AI methods must 

improve. Ethics matter for data privacy, openness, 

and fair access to treatments. These need constant 

focus. Adding AI to current pharma work requires 

teamwork across fields. Staff need tech skills and 

mindset changes. 
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The future looks bright with ongoing growth in 

these technologies. Clear AI, cause-effect analysis, 

mixed data types, and human-AI teamwork will 

help beat limits. Better explanations and rules will 

build trust in AI finds. In the end, steady new ideas 

and joint work from industry, schools, and 

regulators will unlock AI's full power. This means 

safer, quicker, cheaper drugs to meet global health 

gaps. 

7. Abbreviation: 

AI: Artificial Intelligence 

ML: Machine Learning 

DL: Deep Learning 

GenAI: Generative Artificial Intelligence 

GANs: Generative Adversarial Networks 

VAEs: Variational Autoencoders 

LLMs: Large Language Models 

QSAR: Quantitative Structure-Activity 

Relationship 

SVMs: Support Vector Machines 

RF: Random Forest 

GNNs: Graph Neural Networks 

XAI: Explainable Artificial Intelligence 

ADMET: Absorption, Distribution, Metabolism, 

Excretion, Toxicity 

RL: Reinforcement Learning 

SAR: Structure-Activity Relationship 

SPR: Structure-Property Relationship 

NLP: Natural Language Processing 

HTS: High Throughput Screening 

MLP: Multi-Layer Perceptron 

CNNs: Convolutional Neural Networks 

RNNs: Recurrent Neural Networks 

DNNs: Deep Neural Networks 

LSTM: Long Short-Term Memory 

BiLSTM: Bidirectional LSTM 

MCC: Matthews' Correlation Coefficient 

MHC-I: Major Histocompatibility Complex Class 

I 

CPPs: Cell-Penetrating Peptides 

AMPs: Antimicrobial Peptides 

AUC: Area Under the Curve 

AUROC: Area Under the Receiver Operating 

Characteristic Curve 

BERT: Bidirectional Encoder Representations 

from Transformers 

CPANNs: Counter-Propagation Artificial Neural 

Networks 

ECM: Extracellular Matrix 
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