

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES [ISSN: 0975-4725; CODEN(USA): IJPS00]

Journal Homepage: https://www.ijpsjournal.com

Review Article

Nanosuspension: A Novel Approach for The Treatment of Hyperlipidaemia

Mohammad Bakhatwar^{*1}, Dr Sumant Saini², Rajesh Khanna Kotrike³, Mamatha Kola⁴, Dr. K. Swathi Priya⁵

 ¹Research Scholar, Department of Pharmaceutics, Lovely Professional University, Punjab Assistant Professor, Department of Pharmaceutics, Gokaraju Rangaraju College of Pharmacy, Hyderabad-500090.
²Assistant Professor, Department of Pharmaceutics, Lovely Professional University, Punjab.
³Department of Pharmaceutics, Gokaraju Rangaraju College of Pharmacy, Bachupally, Hyderabad-500090.
⁴Assistant Professor, Department of Pharmaceutics, Gokaraju Rangaraju College of Pharmacy, Bachupally, Hyderabad-500090.

⁵Associate Professor, Srinivasarao College of Pharmacy, Visakhapatnam.

ARTICLE INFO ABSTRACT Published: 02 June 2025 Hyperlipidaemia is a condition characterized by increased levels of lipids in the Keywords: bloodstream, which can lead to cardiovascular diseases such as stroke. The medications Hyperlipidaemia, used to treat hyperlipidemia include statins, fibrates, and cholesterol absorption Nanosuspension, Solubility, inhibitors, all of which have low water solubility, dissolution, and bioavailability. To Dissolution, Bioavailability address the issue of poor aqueous solubility, these BCS class II drugs often undergo DOI: nanosuspension formulation. Nanosuspensions, which are colloidal dispersions of 10.5281/zenodo.15576452 nanosized drug particles, present a promising method for enhancing the pharmacokinetic characteristics of poorly water-soluble drugs. By reducing particle size to between 100 and 600 nm or converting the crystalline form of the drug into an amorphous form, nanosuspensions exhibit a high dissolution rate. During the preparation of nanosuspensions, stabilizers play a crucial role in reducing particle size and preventing the aggregation of drug particles.

INTRODUCTION

Hyperlipidaemia is a medical condition characterised by elevated levels of lipoproteins

(LDL, VLDL) and triglycerides, along with decreased levels of HDL (High-density lipoprotein), commonly referred to as good cholesterol. As lipoprotein levels increase, plaque

*Corresponding Author: Mohammad Bakhatwar

Address: Research Scholar, Department of Pharmaceutics, Lovely Professional University, Punjab Assistant Professor, Department of Pharmaceutics, Gokaraju Rangaraju College of Pharmacy, Hyderabad-500090, Email : mohammadbakhatwar93@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

forms in the blood vessels. A significant accumulation of plaque can disrupt blood flow and potentially lead to a stroke. The oral route of drug administration exhibits high patient compliance. BCS class II drugs demonstrate low bioavailability due to their low aqueous solubility. To enhance the solubility and bioavailability of BCS class II drugs, nanotechnology has transformed drug delivery and research. Within nanoparticles, there are nanosuspensions, polymeric nanoparticles, and lipid nanoparticles. Nanosuspension refers to the colloidal dispersion of solid drug particles in an aqueous phase, with a particle size ranging from 100 to 600 nm. In the nanosuspension, there are pure drug or API and stabilisers or surfactants. The pathophysiology of hyperlipidaemia is based on the increasing levels of lipoproteins except HDL. Lipoproteins are HDL (high-density lipoprotein), LDL (low-density lipoprotein), VLDL (very lowdensity lipoprotein), Triglycerides (TG), and Chylomicrons (CH)

Current treatment and limitations of treatment

In the current treatment of hyperlipidaemia, there are

- ✓ Statins
- ✓ Fibrates
- ✓ Bile acid sequestrants
- ✓ Lipolysis
- ✓ Sterols

Drug class	Examples	Daily dose	MOA ²	Limitations ¹
_	_	(mg) ¹		
Statins	Lovastatin	10-80	By blocking HMG-CoA reductase,	Hepatotoxicity,
(HMG-CoA	Simvastatin	5-40	reducing hepatic cholesterol synthesis,	Myopathy, and the
reductase	Pitavastatin	10-80	and boosting the removal of LDL	safety of statins during
inhibitors)	Rosuvastatin	5-20	cholesterol from the bloodstream	pregnancy have not
	Atorvastatin	10-80		been established
	Provastatin	40-80		
Fibrates	Gemfibrozil	1200	Fibrates activate the PPAR-α receptors,	Myalgia, Rashes,
(Fibric acid	Bezafibrate	600	which increase the lipoprotein lipase,	Eosinophilia, Blurred
derivatives)	Fenofibrate	200	leading to lower TG and decreasing	vision and Myopathy is
			VLDL in the liver.	uncommon
Niacin	Nicotinic	2k-6k	Because niacin inhibits hormone-	It acts as vasodilator at
	acid		sensitive lipase, TGs are broken down	high doses, Dyspesia,
			into free fatty acids less frequently.	Dryness and
			Hepatic TG synthesis is decreased when	Hyperpigmentation,
			fewer FFAs enter the liver, which	Gout and should not
			lowers the VLDL.	use in the diabetics
Cholesterol	Ezetimibe	10	By inhibiting the NPC1L1 transporter in	No specific Adverse
absorption			the small intestine, cholesterol	effect except reversible
inhibitors			absorption inhibitors like EZ reduce	hepatic dysfunction and
			blood cholesterol levels by preventing	rarely mytosis noted
			the absorption of dietary and biliary	
			cholesterol. As a result liver receives	
			less cholesterolwhich causes it to	
			increase LDL receptors. This improves	
			the liver's ability to remove LDL.	

Table No. 1: MOA	& Limitations of treatment	of hyperlipidaemia
		or my per inproductinu

Comparison between conventional & nanosuspension ⁷

The comparison table between the conventional dosage and the Nanosuspension dosage forms for easy understanding

Table 10.2 Comparison of Conventional and Nanosuspension		
Parameters	Conventional dose	Nanosuspension
Solubility	Low for BCS II	High due to Low particle size
Bioavailabiliy	Low for poorly soluble drugs like BCS	High due to the Large surface
	П	area
Onset of action	Slow	Faster
Dose required	The dose requirement is high	The dose requirement is low
Formulation	Simple formulation	Complex formulation
Complexity		
Stability	Highly stable	Unstable because of particle
		agglomeration
Administration	Mostly Oral	Suitable for Oral, Ophthalmic,
		and Topical
Patient Compliance	Moderate	Better for lower doses
Cost	Low	High

Table no:2 Comparison of Conventional and Nanosuspension

Preparation methods of nanosuspensions; 4,5

In the preparation methods of Nanosuspensions, there are Bottom-Up technology, Top-Down technology, and Combination Technology.

- **Bottom-Up technology;** In this approach drug is dissolved in a solvent phase (Methanol, Ethanol, Acetone, etc) and then precipitated as nanoparticles in the presence of an anti-solvent (water). In Bottom-Up techniques, there are Solvent-Anti-Solvent, Supercritical fluid, and Lipid emulsion methods.
- **Top-Down technology;** In this approach drug will become nanosized from large particles using mechanical forces. In the Top-down technique, there are Media milling method, High-pressure homogenization, nanoedge, and Nanopure methods.
- **Combination technique**; It integrates both Bottom-Up (Precipitation) and Top-down (High pressure homogenisation) approaches

Bottom-up technique; ⁴

Solvent-anti-solvent Method- This method comes under the Precipitation method. In this method, the drug is dissolved in an organic solvent phase and the stabilizer is dissolved in the aqueous phase. After dissolving the boh phases solven phase is added to the aqueous phase in a drop-bydrop manner with continuous stirring. After the stirring, the formulation undergo sonication for reducing the particle size.

Table No. 3: Advantages and Disadvantages of solvent Solvent-Solvent Method

Advantages	Disadvantages
Simple and easy	Drug loading is low.
process	
Low energy and no	Particle aggregation is
heat generation	high.

Top-down technique; ⁵

Media milling method: This method works on the high shear media mill. The chamber contains water, Drug, stabilizer, and milling media (glass + zirconium oxide + resins). This chamber rotates at

high speed for 2 to 5 days to break down the particle size. Her some of the advantages and disadvantages of the media milling method

Table No. 4: Advantages and Disadvantages of	
Media Milling	

Adavantages	Disadavantages
By this method, we can	It is a time-consuming
prepare very dilute as	process.
well as very	
concentrated	
formulations.	
Easy method to	Some fragments can be
perform	in the micro-sized

High pressure homogenization method; In this method, there are mainly 3 steps. In the 1st step, the drug is dispersed into stabilizer solution, and this solution is homogenized in high pressure and finally homogenized at high pressure for 15 to 25 cycles until to get the desired nano-sized particles and. In this method, there are Homogenization in Aqueous media, in Non-aqueous media, and Nanoedge. Here are some of the advantages and disadvantages of the HPH method

Table No. 5: Advantages and Disadvantages of the HPH Method

Advantages	Disadvantages
The major advantage is	Possibility of
no ned for Organic	contamination
solvents	
Having high stability and uniform particle	High energy input for these lads to high a cost
size	

Combined techniques; ⁵

Emulsion diffusion method; The Drug and stabilizer are dissolved in a suitable solvent, and the stabilizer is dissolved a water. Add the solvent phase into to aqueous phase with continuous phase under ultrasonication for reducing the droplet size. Add a large amount of water and let the solvent evaporate in the solution.

Table No. 6: Advantages and Disadvantages ofEmulsion Diffusion

Advantages	Disadvantages		
No need for high shear	Having stability issues		
Having a good	Low drug compatibility		
encapsulation			
Efficiency			

Figure 1: Flow chart of the preparation of nanosuspension

Excipients	in	the	preparation	of
nanosuspens	ion ⁶			

Category Function and example		
Category	• • • • • • • • • • • • • • • • • • •	
Stabilizers	In stabilisers, there are polymers	
	(poloxamer 188) and Surfactants	
	(SLS) which are helpful in	
	stabilization and to prevent the	
	nanoparticle aggregation.	
Solvents	These are used in the precipitation	
	method to dissolve the drug and to	
	provide steric stabilization.	
	Examples are Methanol, Ethanol,	
	Acetone	
Anti-solvents	It helps in the formation of the	
	precipitate of the drug in the	
	solvent. Examples are water and	
	suitable pH buffers.	
Other	Other additives are Tonicity	
additives	adjusters (Sodium chloride) to	
	maintain isotonicity in the	
	parenteral dosage forms.	

Evaluation parameters of nanosuspensions;

The evaluation parameters of nanosuspension are

- ✓ Particle size and Poly dispersity Index
- \checkmark Zeta potential
- ✓ Drug content
- ✓ Drug entrapment efficiency
- ✓ Saturation solubility
- ✓ Scanning Electron Microscopy
- ✓ Transmission electron microscopy
- ✓ In vitro or Dissolution studies
- \checkmark In vivo studies

Particle size analysis ^{5,6}: Particle size affects the Physicochemical properties like solubility and dissolution rate. To analyse the particle size of the formulation Particle size analyser (Zetasizer) is used, and the particle size should be in the 100 to 600nm range.

PDI ⁴; Poly Dispersity Index is to know the uniform particle sizes, and it should be <0.1 to get the monodisperse particles, and the Dynamic Light Scattering evaluates it

Zeta Potential⁷; It is to know the stability of the suspension and to know the electrostatic forces between the dispersed particles, and the minimum zeta value is 30 mV

Drug Content: The weighed amount of the formulation is subjected to high-speed centrifugation to separate drug-loaded nanoparticles. After collecting the supernatant liquid, add a suitable solvent and sonicate the mixture. Then, filter the solution and measure the absorbance using UV-visible spectrophotometry, comparing it with the calibration curve.

Drug content (%) = (amount of drug estimated/Theoretical drug content) X 100

Drug Entrapment Efficiency: Centrifuge the formulation at high speed to separate the free drug.

Collect the supernatant liquid and filter it. After filtration, measure the absorbance by UV-visible spectrophotometry and compare it with a calibration curve.

EE = Total drug- Free drug/Total drug

Saturation Solubility^{4, 5}; It is necessary to evaluate the drug's saturation solubility in various physiological buffers and at various temperatures, utilizing techniques outlined in the literature. Assessment of saturation solubility helps in figuring out the formulation's in vitro behaviour

SEM: Scanning Electron Microscopy; It is used to determine the shape and morphological structures of the suspended particles

In Vitro Studies; It is performed in a basket or paddle type dissolution apparatus with a suitable buffer and at a temperature of 37 degrees Centigrade with paddle speed 50 rpm.

REFERENCES

- 1. Tripathi KD. Essentials of Medical Pharmacology. 8th ed. New Delhi: Jaypee Brothers Medical Publishers; 2018. p. 636–42.
- Brunton LL, Chabner B, Knollman B. Goodman and Gilman's The Pharmacological Basis of Therapeutics. 12th ed. New York: McGraw-Hill Medical; 2011. p. 902.
- Mohan H. Textbook of Pathology. 7th ed. New Delhi: Jaypee Brothers Medical Publishers; 2018. p. 1055.
- Geetha G, Poojitha U, Khan AA. Various techniques for preparation of nanosuspension. Int J Pharm Res Rev. 2014;3(9):30–7.
- Shahidulla SM, Miskan R, Sultana S. Nanosuspensions in pharmaceutical sciences: A comprehensive review. Int J Health Sci Res. 2023;13(7).
- 6. Komasaka T, Fujimura H, Tagawa T, Sugiyama A, Kitano Y. Practical method for

preparing nanosuspension formulations for toxicology studies in the discovery stage. Chem Pharm Bull (Tokyo). 2014;62(11):1073–82.

- Kamble S, Agarwal A. Advances in nanopharmacy: Techniques for preparing ezetimibe polymeric nanosuspension through lyophilization. Bharati Vidyapeeth Med J. 2025;5(1).
- Abo-Zalam HB, Abdalsalam RA. Revolutionizing hyperlipidemia treatment: Nanoencapsulated CoQ10 and selenium combat simvastatin-induced myopathy and insulin resistance in rats. Adv Pharm Bull. 2024;14(12):364–77.
- 9. Ghyadh BKK, Al-Khedairy EBH. Solubility and dissolution enhancement of atorvastatin calcium using phospholipid solid dispersion technique. Iraqi J Pharm Sci. 2023;32.
- Rani RR, Banu Z, Rahman A. Comprehensive review of hyperlipidemia: Pathophysiology, diagnosis and management.

HOW TO CITE: Mohammad Bakhatwar*, Dr Sumant Saini, Rajesh Khanna Kotrike, Mamatha Kola, Dr. K. Swathi Priya, Nanosuspension: A Novel Approach for The Treatment of Hyperlipidaemia, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 6, 247-252. https://doi.org/10.5281/zenodo.15576452