

INTERNATIONAL JOURNAL OF

PHARMACEUTICAL SCIENCES

[ISSN: 0975-4725; CODEN(USA): IJPS00]

Journal Homepage: <https://www.ijpsjournal.com>

Review Paper

Phytotherapeutic Prospects of *Neolamarckia cadamba*: Mechanistic Insights into its Biological Activities.

Satyaraj D. Ombase*, Saurabh S. Khot, Athashree K. Pawar, Abhishek M. Salunkhe, Somraj B. Nangare

Annasaheb Dange College of B Pharmacy, Ashta, Tal. Walva, Dist. Sangli, Maharashtra India 416 301.

ARTICLE INFO

Published: 05 Feb 2026

Keywords:

Neolamarckia cadamba,
Cadambine,
Phytoconstituents,
Cadambagenic acid,
Neolamarckines

DOI:

10.5281/zenodo.18491723

ABSTRACT

Neolamarckia cadamba (Roxb.) Bosser, commonly known as Kadamba, is a multipurpose tropical evergreen tree from the Rubiaceae family. Known for its medicinal, nutritional, and economic value across South and Southeast Asia. This review comprehensively explores its botanical description, detailed phytochemical profile including indole alkaloids (cadambine, dihydrocadambine, neolamarckines), triterpenoids (betulinic acid, quinovic acid glycosides), flavonoids (quercetin derivatives), phenolics, saponins, and terpenoids and their distribution across leaves, bark, flowers, fruits, roots, and heartwood. Experimental pharmacological studies validate an array of bioactivities: potent antioxidant effects via DPPH/ABTS scavenging; anti-inflammatory action through NF-κB/COX-2 inhibition; antidiabetic potential by α -glucosidase inhibition and insulin sensitization in STZ models; hepatoprotective and nephroprotective roles against CCl4/paracetamol toxicity; antimicrobial efficacy against *E. coli*, *S. aureus*, and *Candida*; analgesic, antipyretic, antimalarial and wound-healing properties linked to key bioactives like cadambine, isocadambine, and 3 β -dihydrocadambine. While preclinical data robustly support Ayurvedic and ethnomedicinal applications for fever, diarrhea, diabetes, inflammation, and skin disorders, clinical evidence remains preliminary and limited to wound healing and glycemic control. Persistent challenges include extract standardization, toxicity profiling, dosage optimization, and adulteration risks. Future research priorities encompass RCTs, LC-MS-based metabolomics, nanoformulations for bioavailability enhancement, and molecular docking to unlock *Neolamarckia cadamba*'s potential as a phytopharmaceutical resource for metabolic, infectious, and oncological therapeutics.

INTRODUCTION

Anxiety disorder is the prominent public health challenge, ranking among prevalent psychiatric

*Corresponding Author: Satyaraj D. Ombase

Address: Annasaheb Dange College of B Pharmacy, Ashta, Tal. Walva, Dist. Sangli, Maharashtra India 416 301.

Email: ombase.satyarajadcbp@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

conditions. According to WHO about 4% of world's population experiences an anxiety disorder also known as panic disorder, social anxiety, and phobia related disorders, which is characterized by excessive fear about something, and physical symptoms like palpitation and restlessness, which lead to impair in daily functioning.^[1] Current pharmacotherapies primarily selective serotonin reuptake inhibitors (SSRIs), serotonin *Neolamarckia cadamba* (Roxb.) Bosser, commonly known as kadamba, kadam, burflower-tree, laran, Leichhardt pine, katampu, vellaikkatampu, and haripriya across various regions, stands as an economically and medicinally vital tropical evergreen tree extensively grown and wild in South and Southeast Asia, spanning India, Bangladesh, Myanmar, Thailand, Indonesia, and southern China.^[1] Once grouped under genera such as *Anthocephalus* and *Nauclea* within families like Rubiaceae, it now firmly belongs to the Rubiaceae family, home to roughly 13,000 species in over 600 genera, celebrated for ornamental, timber, and medicinal attributes.^[2] This fast-growing species soars to 45 meters with a wide umbrella crown and straight trunk, attaining reproductive maturity in 4-5 years while yielding fragrant, orange, globular flower heads year-round in warm climates.^[3] The tree's diverse parts leaves, bark, roots, flowers, and fruit deliver key nutritional and therapeutic value; bark treats fever and diarrhea, leaves promote wound healing and skin health, flowers feature in perfumes and food, and durable timber fuels construction, plywood, and paper industries.^[4-5] *Neolamarckia cadamba* traces its origins to southern China and the Indian subcontinent, from where it spread across tropical and subtropical regions. Its adaptable nature supports cultivation in South and Southeast Asia, including India, Myanmar, Thailand, Indonesia, and Papua New Guinea.^[1] Owing to its rapid growth, early flowering, and valuable timber, the tree holds

significant economic importance. India leads in its natural abundance and utilization, with extensive stands in forests while major timber markets thrive in Southeast Asian countries.^[2] Traditionally, nearly every part of *Neolamarckia cadamba* has been employed in medicinal practices due to its richness in vitamins (A, C), minerals like calcium, potassium, iron, phosphorus, and bioactive compounds along with secondary metabolites.^[6] Attributed to potent antioxidant effects from phenolics, flavonoids, and vitamins such as vitamin C, alongside minerals (calcium, potassium, iron, magnesium, phosphorus) and key secondary metabolites including alkaloids (cadambine, neolamarckines), quinovic acid derivatives, tannins, and saponins, kadamba is renowned for therapeutic roles in inflammation, diabetes, microbial infections, and liver protection. These nutritional attributes bolster overall health, immunity, antidiabetic action, and anti-inflammatory benefits.^[2, 4] Botanically, *Neolamarckia cadamba* is a large evergreen tree that grows 30–45 meters tall. The trunk is straight, cylindrical, and buttressed at the base, with smooth grey bark in young trees becoming rough and fissured in mature ones. Leaves are opposite, glossy green, broadly ovate to elliptical, 13–50 cm long, and 8–25 cm wide, with short petioles and large caducous stipules. The tree bears hermaphroditic flowers, small and fragrant, orange to red, clustered in dense globular heads of 4–5.5 cm diameter on short peduncles. The fruit forms a fleshy, yellow-orange infructescence of numerous small capsules enclosing about 8000 trigonal seeds that split open at maturity.^[1-2]


Botanical Classification:

- **Kingdom:** Plantae
- **Subkingdom:** Tracheobionta
- **Superdivision:** Spermatophyta
- **Division:** Magnoliophyta

- **Class:** Magnoliopsida
- **Subclass:** Asteridae
- **Order:** Gentianales

- **Family:** Rubiaceae
- **Genus:** Neolamarckia
- **Species:** *N. cadamba*.

Fig.1 Different parts of *Neolamarckia cadamba*

In Ayurveda, kadamba bark and leaves treat fever, diarrhea, inflammation, and skin disorders, while indigenous tribes remedy urinary issues and dysentery. Southeast Asia uses it for diabetes and wound healing. Hinduism reveres it as sacred to Lord Krishna, celebrated during Kadambotsava festivals.^[8] *Neolamarckia cadamba* boasts a rich phytochemical profile featuring indole alkaloids like cadambine, dihydrocadambine, isodihydrocadambine, neolamarckines A-E, cadamine, and 3β-isodihydrocadambine,

predominantly from leaves and bark. Triterpenoids such as quinovic acid glycosides, cadambagenic acid, and betulinic acid, together with flavonoids (quercetin-3-rhamnoglucoside, kaempferol), phenolics (caffeic acid, chlorogenic acid), tannins, saponins, and steroids including β-sitosterol, underpin its bioactivity.^[9,10]

2. PHYTOCONSTITUENTS IN DIFFERENT PARTS OF NEOLAMARCKIA CADAMBA

Table 1: Phytoconstituents in different parts of *Neolamarckia cadamba* ^[2, 9-11]

Sr. No.	Phytochemical Class	Major Identified Compounds	Source Plant Part
1	Indole Alkaloids	Neolamarckine A-E, cadambine, cadamine, isocadambine, 3α/β-dihydrocadambine, isodihydrocadambine, angustine	Leaves, bark, heartwood
2	Triterpenoids & Glycosides	Cadambagenic acid, quinovic acid, betulinic acid, triterpenoid glycosides A-B	Bark, leaves
3	Flavonoids & Phenolics	Quercetin, kaempferol, quercetin-3-rhamnoglucoside, chlorogenic acid, taxifolin	Leaves, shoots
4	Saponins	Saponin B, sapogenins	Bark, whole plant
5	Terpenoids & Sesquiterpenes	α-selinene, β-phellandrene, terpinolene, selinene	Fruits, bark
6	Essential Oils (Monoterpenes)	Linalool, geraniol, geranyl acetate, myrcene, camphene, 2-nonanol	Flowers, fruits
7	Steroids	Steroids (unspecified)	Bark, leaves
8	Tannins	Condensed tannins	Bark
9	Carbohydrates	Reducing sugars	Whole plant
10	Lipids	Fats	Whole plant

3. MAJOR BIOACTIVE CONSTITUENTS:

Neolamarckia cadamba (Kadamba) is rich in bioactive phytochemicals, predominantly indole alkaloids, triterpenoids, flavonoids, saponins, and phenolic glycosides isolated from its bark, leaves, flowers, and fruits. These compounds underpin the plant's traditional medicinal uses and drive diverse pharmacological effects like antioxidant, antimicrobial, antidiabetic, anti-inflammatory, hepatoprotective, anticancer, antimalarial, and antidiarrheal activities, validated through extensive in vitro, in vivo, and preliminary clinical studies.

Cadambine

Cadambine, primarily isolated from the bark as a key indole alkaloid, exhibits potent antimicrobial activity against Gram-positive and Gram-negative bacteria like *Staphylococcus aureus* and *Escherichia coli*. Its mechanism involves membrane permeabilization, leading to leakage of intracellular potassium ions and proteins, alongside inhibition of bacterial DNA gyrase to prevent supercoiling and replication. Additionally, it demonstrates anti-inflammatory effects by blocking NF- κ B nuclear translocation in macrophages, thereby downregulating pro-inflammatory cytokines such as TNF- α , IL-1 β , and IL-6, while also inhibiting COX-2-derived prostaglandin E2 synthesis. ^[12, 13]

Cadamine

Cadamine, a derivative of cadambine found in bark extracts, contributes antidiabetic effects by potentiating insulin release from pancreatic β -cells through voltage-gated calcium channel modulation and enhanced glucose-stimulated insulin secretion. It inhibits α -amylase and α -glucosidase enzymes in the small intestine, reducing postprandial hyperglycemia with IC50

values around 20-50 μ g/mL in in vitro assays. Its antioxidant mechanism includes direct scavenging of DPPH and ABTS radicals (IC50 ~30 μ M) and upregulation of endogenous enzymes like superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) via Nrf2-ARE pathway activation. ^[9]

Isocadambine

Isocadambine, an indole alkaloid from bark, provides hepatoprotective action against carbon tetrachloride (CCl4)-induced liver damage in rodent models at doses of 200-400 mg/kg. It stabilizes hepatocyte lysosomal membranes, inhibits lipid peroxidation (measured by reduced malondialdehyde levels), and enhances phase II detoxification enzymes including glutathione-S-transferase (GST) and UDP-glucuronosyltransferase. Further, it modulates cytochrome P450 2E1 (CYP2E1) to limit reactive oxygen species (ROS) generation during toxin metabolism. ^[14]

3 α -Dihydrocadambine

This bark glycosidic alkaloid inhibits intestinal α -glucosidase (IC50 15-25 μ M), delaying sucrose and maltose hydrolysis to blunt glycemic excursions in streptozotocin-induced diabetic rats. It activates peroxisome proliferator-activated receptor gamma (PPAR- γ) in adipocytes, promoting adiponectin secretion and improving insulin sensitivity. Antioxidant effects involve quenching hydroxyl radicals and restoring hepatic glycogen levels. ^[13, 15]

Betulinic Acid

Betulinic acid, a pentacyclic triterpenoid enriched in leaves and bark (up to 0.5% w/w), induces intrinsic apoptosis in cancer cells (e.g., melanoma, leukemia) by destabilizing mitochondrial outer

membrane permeability transition pores, releasing cytochrome c, and sequentially activating caspase-9 and caspase-3. It inhibits topoisomerase I/II (IC₅₀ 5-10 μ M), causing DNA double-strand breaks, and suppresses NF- κ B/STAT3 signaling to reduce anti-apoptotic Bcl-2 expression. Cardioprotective mechanisms include endothelial nitric oxide synthase (eNOS) upregulation and reduced oxidative stress in ischemia-reperfusion models. ^[16]

Quinovic Acid Glycosides

These bark triterpenoid saponins exert hepatoprotective effects against paracetamol overdose by elevating reduced glutathione (GSH) levels (up to 2-fold), inhibiting CYP2E1-mediated NAPQI formation, and blocking TGF- β 1-induced hepatic stellate cell activation to prevent fibrosis. Anti-inflammatory actions promote fibroblast collagen deposition (types I/III) and macrophage polarization toward M2 phenotype during wound healing, accelerating tensile strength recovery in excision models. ^[17,18]

Neolamarckines A-E

These novel leaf indole alkaloids demonstrate selective topoisomerase II α inhibition (IC₅₀ 2-8 μ M), stabilizing the enzyme-DNA cleavage complex and inducing G2/M cell cycle arrest in HeLa and MCF-7 cells via ATM/ATR-Chk1 pathway activation. They intercalate DNA minor grooves, as confirmed by UV-vis and fluorescence spectroscopy, leading to p53-independent apoptosis. ^[19,20]

Angustine

Computational network pharmacology on *Uncaria rhynchophylla* alkaloids highlighted angustoline and angustidine (structurally similar to angustine) as key hits targeting A β pathology, tau

phosphorylation, and inflammation (e.g., via PTGS2, NOS2 interactions), with high target frequencies in AD pathways; angustine shares this class profile. ^[10, 21]

Harmane

Ubiquitous β -carboline alkaloid inhibits bacterial DNA gyrase B (IC₅₀ 12 μ M) and fungal 14 α -demethylase, disrupting ergosterol biosynthesis. CNS effects stem from reversible monoamine oxidase A (MAO-A) inhibition (Ki 2 μ M), elevating serotonin and dopamine levels. ^[22]

Cadambagenic Acid:

Cadambagenic acid is a significant pentacyclic triterpene primarily isolated from the stem bark of the Kadamba tree. While many pharmacological studies focus on the whole plant extract, cadambagenic acid itself is recognized as one of the key bioactive constituents contributing to the plant's medicinal efficacy. ^[23, 24]

Chlorogenic Acid

Fruits and leaves contain this hydroxycinnamic acid, which chelates Fe²⁺/Cu²⁺ ions to prevent Fenton reactions and donates H-atoms to peroxy radicals (DPPH IC₅₀ 8 μ M). It suppresses LPS-induced iNOS/COX-2 transcription via MAPK/JNK inhibition in macrophages. ^[25]

Quercetin-3-rhamnoglucoside

Leaf flavonoid activates AMP-activated protein kinase (AMPK) in liver (EC₅₀ 20 μ M), phosphorylating ACC to inhibit fatty acid synthesis and promote GLUT4 translocation for glucose uptake. It competitively inhibits aldose reductase (Ki 1.2 μ M), reducing sorbitol accumulation in diabetic lenses. ^[26]

4. Pharmacological Activities of *Neolamarckia cadamba*:

Neolamarckia cadamba demonstrates diverse pharmacological activities mainly through its leaf, bark, and root extracts (methanolic, ethyl acetate, aqueous), rich in monoterpenoid indole alkaloids (e.g., 3 β -dihydrocadambine, neocadambines), flavonoids, phenolics, and terpenoids.

Anti-inflammatory Activity: [27-28]

Methanolic, ethyl acetate (EA), and aqueous extracts (200-400 mg/kg, oral) significantly reduce carrageenan-induced paw edema in rats (acute model) and cotton pellet/granuloma formation (subacute model), comparable to aspirin or dexamethasone. In vitro, isolates like 3 β -dihydrocadambine, neocadambine D, and compound 9 inhibit LPS-induced TNF- α , IL-1 β , and COX-2 release in RAW 264.7 macrophages at 10 μ g/mL, outperforming dexamethasone in some cases. Proposed mechanism involves suppression of pro-inflammatory cytokines and possibly COX/lipoxygenase inhibition or reduced mediator synthesis/release, though exact pathways (e.g., NF- κ B signaling) remain unexplored.

Analgesic Activity: [29]

EA and methanolic extracts/fractions (200-400 mg/kg) decrease acetic acid-induced writhing (peripheral pain) and show central effects in hot plate models in mice. Key compound 3 β -dihydrocadambine significantly lowers writhing counts. Mechanism likely involves prostaglandin modulation or opioid pathways, but lacks detailed receptor binding or molecular confirmation.

Antidiabetic Activity: [30-31]

The antidiabetic activity of *Neolamarckia cadamba* is well-established across various plant parts, including the bark, leaves, roots, and

flowers. Scientific evaluations in diabetic models (alloxan and streptozotocin-induced) have demonstrated that the plant acts through multiple pathways to regulate blood glucose and mitigate secondary complications.

Hepatoprotective Activity: [32-33]

The hepatoprotective activity of *Neolamarckia cadamba* (Kadamba) is one of its most scientifically substantiated medicinal properties. Both the bark and leaves contain a high concentration of chlorogenic acid, cadambine, and various triterpenoids that protect the liver against chemical-induced injury. Protection against chemical hepatotoxins, antioxidant enzyme restoration, protection against fatty liver (antisteatotic effect) this are the mechanisms by which *Neolamarckia cadamba* shows hepatoprotective activity.

Antimicrobial Activity: [34-35]

The antimicrobial activity of *Neolamarckia cadamba* is attributed to its diverse phytochemical profile, particularly saponins, terpenoids, and alkaloids found in the bark and leaves. These compounds act as a natural defense system for the plant, which translates to broad-spectrum efficacy against bacteria and fungi in therapeutic applications.

Antioxidant Activity: [36]

The antioxidant activity of *Neolamarckia cadamba* is a cornerstone of its pharmacological profile, as it underpins many of its other effects, such as hepatoprotection and anti-inflammation. The plant contains a potent mixture of polyphenols, flavonoids (like rutin and quercetin), and hydroxycinnamic acids (like chlorogenic acid) that neutralize reactive oxygen species (ROS).

Other Activities:

- Antipyretic:** The antipyretic activity of *Neolamarckia cadamba* has been scientifically validated using experimental models of thermogenesis. This activity is closely linked to its anti-inflammatory properties, as both involve the regulation of prostaglandins and cytokines.^[24,37]
- Antilipidemic:** The antilipidemic activity of *Neolamarckia cadamba* is primarily associated with its ability to regulate cholesterol and triglyceride levels, making it a potential natural treatment for dyslipidemia and cardiovascular health. Research indicates that the roots, bark, and leaves all possess lipid-lowering properties, largely due to the presence of flavonoids, saponins, and triterpenoids.^[30]
- Diuretic:** The diuretic activity of *Neolamarckia cadamba* has been scientifically explored to validate its traditional use in treating urinary disorders and kidney stones. These studies typically measure the "natriuretic" and "saluretic" effects, which involve the excretion of water and essential electrolytes.^[5,24]
- Laxative:** The laxative property of *Neolamarckia cadamba* is a traditional medicinal use that has been supported by pharmacological screening, particularly involving the bark and leaf extracts. It is categorized as a "stimulant" or "bulk-forming" laxative depending on the concentration and extract type.^[5,38]
- Antimalarial/Anthelmintic:** Moderate activity against *Plasmodium/P. berghei* and worms, quinovic acid implicated, but parasite lifecycle targets unknown. Most activities stem from in vivo rodent models and in vitro assays, with alkaloids/flavonoids as leads, but comprehensive mechanistic studies (e.g., signaling cascades, binding affinities) are absent across reports.^[39-40]

Table. 2 Different parts and key active constituents of *Neolamarckia cadamba* responsible for Pharmacological activities

Plant Part	Pharmacological Activities	Key Active Constituents
Leaves	Anticancer, Antioxidant, Antimicrobial	Indole alkaloids (neolamarckines), cadambine derivatives, flavonoids
Bark	Hepatoprotective, Analgesic, Anti-inflammatory, Antipyretic, Antidiabetic	Quinovic acid derivatives, phenolics, flavonoids, triterpenoids (cadamine)
Flowers	Antidiabetic	Methanol-soluble phenolics, flavonoids
Roots	Antidiabetic, Antimicrobial, Wound-healing	Flavonoids, saponins, tannins
Heartwood	Metabolic regulation (anti-diabetic)	Quinovic acid, cadambagenic acid, beta-sitosterol
Fruits	Antidiarrheal, Antioxidant	Tannins, saponins, phenolics
Stem	Antimalarial, Diuretic, Laxative	Quinovic acid glycosides, alkaloids,
Seeds	Antilipidemic	Beta-sitosterol
Whole Plant	Central Analgesic	Monoterpenoid indole alkaloids (3 β -dihydrocadambine)

CONCLUSION

Neolamarckia cadamba (Roxb.) Ridsdale, commonly known as Kadamba, is a fast-growing evergreen tree from the Rubiaceae family, native

to South and Southeast Asia, and highly valued for its nutrient-rich profile and pharmacological versatility in traditional systems like Ayurveda and Siddha, as well as emerging modern research. Its diverse phytoconstituents, including alkaloids such as cadambine and 3β -dihydrocadambine, flavonoids like quercetin and rutin, phenolic compounds, terpenoids (lupeol, β -sitosterol), saponins, tannins, and glycosides, contribute to a wide array of therapeutic effects observed across its leaves, bark, flowers, fruits, and roots. Traditional medicine employs Kadamba extensively for managing digestive ailments like diarrhea, dysentery, and ulcers through astringent bark decoctions; it treats skin disorders, wounds, fever, inflammation, and leucorrhea, while flowers remedy urinary troubles and vomiting, and fruits address diabetes and microbial infections. Experimental studies validate these uses, demonstrating potent antioxidant activity via DPPH, ABTS, and FRAP assays that combat oxidative stress; anti-inflammatory effects through inhibition of pro-inflammatory mediators like COX-2 and cytokines; and antimicrobial action against pathogens including *E. coli*, *S. aureus*, and *Candida albicans*. Further preclinical evidence highlights antidiabetic potential by lowering blood glucose and improving insulin sensitivity in streptozotocin-induced diabetic models, hepatoprotective and nephroprotective roles against toxin-induced damage, anticancer cytotoxicity toward breast, colon, and leukemia cell lines via apoptosis induction, and wound-healing acceleration through collagen synthesis and fibroblast proliferation. Cardioprotective benefits include lipid-lowering and antihypertensive effects, while antimalarial activity from alkaloids shows promise against *Plasmodium* species. Despite robust in vitro and animal data, clinical evidence remains limited, with preliminary studies supporting bark extracts for wound healing and diabetes management.

though no large-scale human trials confirm efficacy or safety. Challenges persist in extract standardization, detailed phytochemical profiling via LC-MS, dosage optimization, long-term toxicity assessment, and adulteration risks. Future research should emphasize randomized controlled trials, nanoencapsulated formulations for enhanced bioavailability, and molecular docking studies to identify multi-target mechanisms, positioning *Neolamarckia cadamba* as a prime candidate for phytopharmaceuticals and nutraceuticals targeting metabolic, infectious, and oncological disorders.

REFERENCES

1. Wikipedia contributors. *Neolamarckia cadamba* [Internet]. Wikipedia, The Free Encyclopedia; [cited 2025 November 20]. Available from: [\[https://en.wikipedia.org/wiki/Neolamarckia_cadamba\]](https://en.wikipedia.org/wiki/Neolamarckia_cadamba)(https://en.wikipedia.org/wiki/Neolamarckia_cadamba)
2. Yadav JP, et al. *Neolamarckia cadamba*: A Comprehensive Review of Its Botanical, Ethnobotanical, Phytochemical, and Industrial Significance. *Neuroquantology*. 2022 Aug;20(8):11281-11286.
3. Rubi V, Fatma C, Amit S. *Neolamarckia Cadamba*: A Comprehensive Pharmacological. *Glob J Pharmaceu Sci*. 2018;6(4):555691.
4. Pandey A, Negi PS. Traditional uses, phytochemistry and pharmacological properties of *Neolamarckia cadamba*: A review. *J Ethnopharmacol*. 2016; 181:118-135.
5. Dwevedi A, Sharma K, Sharma YK. Cadamba: A miraculous tree having enormous pharmacological implications. *Pharmacognosy Rev*. 2015;9(18):107–113.

6. Sharma R, et al. Pharmacological activities of *Neolamarckia cadamba*. World J Pharm Res. 2022;11(12):256-268.
7. eFloraofIndia. *Neolamarckia cadamba* [Internet]. [Cited 2025 Nov 30]. Available from: <https://efloraofindia.com/efi/neolamarckiacadamba/>
8. IAFA. Kadamba (*Neolamarckia cadamba*) [Internet]. Institute of Applied Food Allergy; [cited 2025 Dec 18]. Available from: <https://www.iafaforallergy.com/dravya-herbs-part-a/kadamba-neolamarckiacadamba/>
9. Dubey A, Nayak S, Goupale DC. A Review on Phytochemical, Pharmacological and Toxicological Studies on *Neolamarckia cadamba*. Der Pharmacia Lettre. 2011;3(1):45-54.
10. Qureshi AK, Liew SY, Othman NA, Awang K. Phytochemical constituents from *Neolamarckia cadamba* (Roxb.) Bosser leaves. Biochem Syst Ecol. 2021;96:104257.
11. Yang L, Wu L, Li Y, et al. Comprehensive Secondary Metabolite Profiling and Antioxidant Activity of Aqueous and Ethanol Extracts of *Neolamarckia cadamba* (Roxb.) Bosser Fruits. Metabolites. 2024;14(9):511.
12. Anonymous. Antimicrobial Activity and Phytochemical Evaluation of *Neolamarckia cadamba* Leaf Extract: Research Article. J Pharma Insights Res. 2025;3(1):151-158.
13. Umachigi SP, Kumar GS, Jayaveera K, et al. Antimicrobial, wound healing and antioxidant activities of *Anthocephalus cadamba*. Afr J Tradit Complement Altern Med. 2007;4(4):481-487.
14. Krishnakumar NM, Latha PG, Rajasekharan S, et al. Assessment of hepatoprotective activity of coded plant (222) leaf ethanolic extract against carbon tetrachloride-induced hepatotoxicity in Wistar rats – Part IV. Traditional and Folk Practices. 2017;5(2):107-152.
15. Behl T, Gupta A, Albratty M, et al. Alkaloidal Phytoconstituents for Diabetes Management: Exploring the Unrevealed Potential. Molecules. 2022;27(18):5851.
16. Xu T, Pang Q, Wang Y, Yan X. Betulinic acid induces apoptosis by regulating PI3K/Akt signaling and mitochondrial pathways in human cervical cancer cells. Int J Mol Med. 2017;40:1669-1678.
17. Zayed MZ, Ahmad FB, Ho WS, Pang SL. GC-MS analysis of phytochemical constituents in leaf extracts of *Neolamarckia cadamba* (Rubiaceae) from Malaysia. Int J Pharm Pharm Sci. 2014;6(9):123-127.
18. Aquino R, de Simone F, Pizza C, et al. Plant metabolites. Structure and in vitro antiviral activity of quinovic acid glycosides from *Uncaria tomentosa* and *Guettarda platypoda*. J Nat Prod. 1989;52(4):679-685.
19. Qureshi AK, Mukhtar MR, Hirasawa Y, et al. Neolamarckines A and B, new indole alkaloids from *Neolamarckia cadamba*. Chem Pharm Bull (Tokyo). 2011;59(2):291-293.
20. Tokala R, Sana S, Lakshmi UJ, et al. Design and synthesis of thiadiazolo-carboxamide bridged β -carboline-indole hybrids: DNA intercalative topo-II α inhibition with promising antiproliferative activity. Bioorg Chem. 2020;105:104357.
21. Zeng P, Su HF, Ye CY, et al. Therapeutic Mechanism and Key Alkaloids of *Uncaria rhynchophylla* in Alzheimer's Disease From the Perspective of Pathophysiological Processes. Front Pharmacol. 2021;12:806984.
22. Ding Z, Li X, Chen H, et al. Harmane Potentiates Nicotine Reinforcement Through MAO-A Inhibition at the Dose Related to Cigarette Smoking. Front Mol Neurosci. 2022;15:925272.

23. Banerji N. A new saponin from stem bark of *Anthocephalus cadamba* Miq. Indian J Chem B. 1977;15B(7):644–645.

24. Mondal S, Dash GK, Acharyya A. Analgesic, anti-inflammatory and antipyretic studies of *Neolamarckia cadamba* barks. J Pharm Res. 2009;2(6):1133–1136.

25. Shan J, Fu J, Zhao Z, et al. Chlorogenic acid inhibits lipopolysaccharide-induced cyclooxygenase-2 expression in RAW264.7 cells through suppressing NF-B and JNK/AP-1 activation. Int Immunopharmacol. 2009;9(9):1042–1048.

26. Wang M. Effect of quercetin on lipids metabolism through modulating the gut microbial and AMPK/PPAR signaling pathway in broilers. Front Cell Dev Biol. 2021;9:616219.

27. Yuan HL, Zhao YL, Qin XJ, Liu YP, Yu HF, Zhu PF, et al. Anti-inflammatory and analgesic activities of *Neolamarckia cadamba* and its bioactive monoterpenoid indole alkaloids. J Ethnopharmacol. 2020 Oct 5;260:113045

28. Chandrashekhar KS, Abinash B, Prasanna KS. Anti-inflammatory effect of the methanol extract from *Anthocephalus cadamba* stem bark in animal models. Int J Plant Biol. 2010 Feb 17;1(1):e6

29. Verma R, Chaudhary F, Kumar J. Evaluation of anti-inflammatory, analgesic and antipyretic properties of *Neolamarckia cadamba* leafs on Wistar albino rats. J Pharmacol Clin Res. 2019;7(2):555709.

30. Anonymous. Heartwood and root extract of *Neolamarckia cadamba* ameliorate oxidative stress linked type II diabetes in Wistar albino rats. Res J Pharm Technol. 2023;16(3):1121–1126.

31. Anonymous. Antidiabetic activity of *Neolamarckia cadamba* (Roxb.) Bosser flower extract in alloxan-induced diabetic rats. J Ethnopharmacol. 2020.

32. Kapil A, Koul I, Suri OP. Antihepatotoxic effects of chlorogenic acid from *Anthocephalus cadamba*. Phytother Res. 1995;9(3):189–193.

33. Alam MA, et al. Hepatoprotective and antioxidant activity of *Anthocephalus cadamba* Roxb. leaves against -induced liver injury in rats. J Appl Pharm Sci. 2011;1(4):55–58.

34. Umesh P, et al. Antibacterial activity of *Neolamarckia cadamba* (Roxb.) Bosser leaf extracts against some pathogenic bacteria. Int J Pharma Bio Sci. 2014;5(1):127–132.

35. Mishra A, Goyal AK. Evaluation of the antibacterial activity of *Anthocephalus cadamba* (Roxb.) Miq. leaves against various pathogenic bacteria. J Appl Pharm Sci. 2014;4(3):065–069.

36. Ganjewala D, Gupta AK. Study on phytochemical composition, antioxidant and antibacterial properties of *Neolamarckia cadamba* (Roxb.) Bosser fruit extract. J Biomedical Pharm Res. 2013;2(1):11–17.

37. Mishra SB, Srivastava V. Antihyperlipidemic activity of *Neolamarckia cadamba* (Roxb.) Bosser root extract in Triton X-100 induced hyperlipidemic rats. J Appl Pharm Res. 2023;11(2):45–51.

38. Ganjewala D, Gupta AK, Luthra R. An overview of phytochemical and pharmacological potentials of *Neolamarckia cadamba*. J Biomedical Pharm Res. 2013;2(2):1–7.

39. Kaur K, et al. Antimalarial activity of *Anthocephalus cadamba* (Roxb.) Miq. J Ethnopharmacol. 2009;124(1):1–5.

40. Sabu S, Subash S. Evaluation of quinovic acid derivatives from *Neolamarckia cadamba* against *Plasmodium berghei* in Swiss albino mice. Global J Pharmacol Res.

2025;13(2):44–50

HOW TO CITE: Satyaraj D. Ombase*, Saurabh S. Khot, Ahashree K. Pawar, Abhishek M. Salunkhe, Somraj B. Nangare, Phytotherapeutic Prospects of *Neolamarckia cadamba*: Mechanistic Insights into its Biological Activities., Int. J. of Pharm. Sci., 2026, Vol 4, Issue 2, 682-692. <https://doi.org/10.5281/zenodo.18491723>

