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The anti-apoptotic protein B-cell lymphoma 2 (BCL-2) has emerged as a critical 

therapeutic target in cancer due to its role in evading programmed cell death. Inhibiting 

BCL-2 restores apoptotic pathways, making it a promising strategy in anticancer drug 

discovery. In the present study, a systematic computational approach integrating 

Quantitative Structure–Activity Relationship (QSAR) and molecular docking was 

employed to identify structural determinants of BCL-2 inhibition and to prioritize 

potential lead compounds. A curated dataset of BCL-2 inhibitors was standardized, and 

molecular descriptors were calculated using PaDEL and RDKit. After feature selection, 

models were built using Multiple Linear Regression (MLR), Random Forest (RF), and 

Support Vector Regression (SVR). The best-performing model demonstrated robust 

predictive power with high internal and external validation statistics (R² > 0.80, Q² > 

0.75). Applicability domain analysis confirmed model reliability. Docking studies were 

performed using the crystal structure of BCL-2 (PDB ID: 4LVT) to validate binding 

interactions within the BH3 groove. Key interactions included hydrogen bonding with 

Asp108 and Arg146, and hydrophobic contacts with Phe101 and Tyr161, consistent 

with known BCL-2 pharmacophore features. Top-ranked compounds exhibited 

favorable docking scores (−9.2 to −11.5 kcal/mol) and satisfied drug-likeness and 

ADMET criteria. The integrated QSAR–docking workflow highlighted that balanced 

hydrophobicity, presence of hydrogen bond acceptors, and aromatic moieties are 

crucial for activity. This study provides valuable insights into the structural 

requirements for BCL-2 inhibition and offers a computational framework for designing 

novel anticancer agents with improved potency and pharmacokinetic profiles.  
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INTRODUCTION Cancer remains one of the leading causes of 

mortality worldwide, characterized by 
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uncontrolled cell proliferation, genetic instability, 

and the evasion of programmed cell death. Among 

the various mechanisms by which cancer cells 

acquire survival advantages, dysregulation of 

apoptosis plays a central role. Apoptosis, or 

programmed cell death, is a tightly regulated 

process that maintains tissue homeostasis and 

eliminates damaged or unwanted cells. One of the 

major regulators of apoptosis is the B-cell 

lymphoma 2 (BCL-2) protein family, which 

consists of both pro-apoptotic (e.g., BAX, BAK, 

BAD) and anti-apoptotic (e.g., BCL-2, BCL-XL, 

MCL-1) members. The delicate balance between 

these proteins determines whether a cell undergoes 

survival or death. The BCL-2 protein, in particular, 

functions as a potent anti-apoptotic factor by 

sequestering pro-apoptotic members and 

preventing the release of cytochrome c from 

mitochondria, thereby inhibiting the intrinsic 

apoptotic pathway. Overexpression of BCL-2 has 

been observed in numerous cancers, including 

chronic lymphocytic leukemia (CLL), non-

Hodgkin’s lymphoma, breast cancer, prostate 

cancer, and lung cancer, where it contributes to 

tumor progression, resistance to chemotherapy, 

and poor prognosis. Given its crucial role in 

apoptosis evasion, BCL-2 has become an 

attractive molecular target for anticancer drug 

discovery. Several small-molecule inhibitors 

targeting BCL-2 have been developed, among 

which venetoclax (ABT-199) has achieved clinical 

success, particularly in hematological 

malignancies. Venetoclax is a selective BCL-2 

inhibitor approved by the FDA, demonstrating that 

therapeutic inhibition of BCL-2 is feasible and 

clinically beneficial. However, limitations such as 

the development of resistance, dose-dependent 

toxicity, and off-target effects underscore the need 

to discover novel, more potent, and selective BCL-

2 inhibitors. In recent years, computational 

approaches have gained significant importance in 

rational drug design. Quantitative Structure–

Activity Relationship (QSAR) analysis establishes 

mathematical models that correlate chemical 

structures with biological activities, providing 

insights into the physicochemical and structural 

requirements for potency. QSAR models allow 

virtual screening of chemical libraries and 

prioritization of promising compounds before 

experimental testing, thereby reducing both cost 

and time in the drug discovery pipeline. On the 

other hand, molecular docking is a structure-based 

computational technique that predicts the 

preferred binding orientation of small molecules 

within a target’s active site. Docking studies 

provide valuable information about binding 

affinities, key molecular interactions, and 

structure–activity trends, which are essential for 

lead optimization. Integrating QSAR and 

molecular docking offers a powerful dual 

approach in the search for new BCL-2 inhibitors. 

While QSAR highlights descriptors and molecular 

features associated with enhanced activity, 

docking rationalizes these findings by visualizing 

ligand–protein interactions within the BH3-

binding groove of BCL-2. Together, these 

techniques provide a complementary framework 

for the identification and optimization of novel 

anticancer agents. 
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dig 1: Role of BCL-2 in Apoptosis Regulation and Cancer Progression 

BCL-2 is an important gene that was discovered as 

the first anti-death gene, which has Significant 

implications for the study of tumor biology. The 

human Bcl-2 family of Proteins includes six anti 

apoptotic proteins, three structurally similar pro 

apoptotic Proteins, and various structurally diverse 

pro apoptotic interacting proteins that work As 

upstream agonists or antagonists. These proteins 

are regulated by multiple post-Translational 

modifications and interactions with other proteins. 

Bcl-2-family proteins Regulate different types of 

cell death, such as apoptosis, necrosis, and 

autophagy, and Play a critical role in the 

convergence of multiple pathways with relevance 

to oncology. Now, experimental treatments 

targeting Bcl-2-family mRNAs or proteins are 

Undergoing clinical testing, raising optimisms for 

a new class of anticancer drugs in the Future 

Mitochondria are key players in a pathway to cell 

death that is triggered by a variety Of toxic insults. 

The Bcl-2 family of proteins regulates these 

mitochondrial events. The BCL-2, BCL3, BCL5, 

BCL6, BCL7A, BCL9, and BCL10, it has clinical 

significance In lymphoma or leukemia.Bcl-2 (B-

cell leukaemia/lymphoma 2), encoded in humans 

By the BCL-2 gene, is found on chromosome 18, 

and the transfer of the BCL-2 gene To regulate cell 

death (apoptosis), by either inhibiting (anti-

apoptotic). 
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dig 2: The Bcl-2 Family of Apoptotic Regulators 

Bcl-2 proteins can be grouped into three 

subfamilies:  

• Bcl-2 protectors protect cells against 

apoptosis.  

•  Bcl-2 killers (eg, Bax and Bak) are 

proapoptotic proteins that actively kill cells.  

• Bcl-2 regulators (widely known as BH3-only 

proteins) promote cell killing by Either 

interfering with the protectors or activating the 

killers.  

Acquired resistance to cell death is a common 

feature of cancer, which involves Abnormal over-

expression of pro-survival BCL-2 proteins or 

abnormal reduction of Pro-apoptotic BCL-2 

proteins. These abnormalities lead to the inhibition 

of apoptosis And are frequently detected in various 

malignancies. The pro-survival and pro-apoptotic 

BCL-2 proteins are critical regulators of apoptosis, 

making them attractive targets for Developing 

cancer treatment agents. This review discusses the 

roles of various BCL-2 Family proteins in normal 

development and organismal function, and how 

defects in Apoptosis control contribute to the 

development and therapy resistance of cancer. 

Finally, the review explores the development of 

novel BH3-mimetic drugs, inhibitors Of pro-

survival BCL-2 proteins, as agents for cancer 

therapy. Apoptosis is a crucial cellular process that 

plays a vital role in the survival, development, and 

functioning of multicellular organisms 

Deregulation of apoptosis Is linked to various 

diseases, spanning from cancer to degenerative 

disorders Two Established pathways to apoptosis 

are the mitochondrial (intrinsic) pathway, which is 

Stress-induced and regulated by BCL-2, and the 

death receptor-induced (extrinsic) Pathway The 

BCL-2 protein family can be categorized into three 

sub-groups According to their amino acid 

sequence similarity and functions: the BH3-only 

pro- apoptotic proteins (BIM, BID, PUMA, BMF, 

NOXA, BIK, BAD, HRK), the pro- survival 

proteins (BCL-2, BCLXL, BCL-W, MCL-1, 

A1/BFL-1), and the apoptosis Effectors (BAX, 

BAK, BOK) 
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Fig 3: The BCL-2 protein family regulates the intrinsic pathway of apoptotic Cell death 

Anticancer Agents Targeting bcl2: 

The Bcl-2 protein plays a key role in preventing 

programmed cell death in cancer Cells, making it 

an important target for anticancer drug 

development. Researchers have Recently focused 

on designing BH3 domain mimetics to inhibit Bcl-

2, which has led to The approval of Venetoclax 

(ABT-199) for treating chronic lymphocytic 

leukaemia. In This study, the researchers extended 

their previous work on indole-based heterocycles 

As Bcl-2 inhibitors to investigate quinolin-4-yl 

based oxadiazole and triazole analogues. The 

researchers synthesized the target compounds via 

a common intermediate and Found that some of 

the quinoline-based oxadiazole analogues showed 

potent anticancer Activity against Bcl-2-

expressing cancer cell lines. Computational 

molecular modelling Was used to rationalize the 

Bcl-2 targeted anticancer activity of the most 

active Analogue (a) and suggested possibilities for 

designing further potent and selective Bcl- 2 

inhibitory heteroaromatics with therapeutic potent 

MATERIALS AND METHODS:  

Dataset for analysis:  

The dataset contain 40 quinazoline based 

derivative drugs were retrieved from various 

literature sources with structure elucidated from 

marine sponge quinazolin derivative drug HEQ-1 

was added in the dataset .All ligand chemical 

structures were designed and converted from 2D 

structure to 3D structure using Chem Draw 

software .The dataset has been chosen by which 

covers the information about its biological 

activity. The in vitro biological activity data was 

reported as IC50. The IC50 values were Converted 

to pIC50. The dataset consists of some highly 

Active and inactive molecules, with very few 

molecules in Between. 21 molecules were 

randomly chosen for training set and 19 molecules 

were selected for test sets according QSAR 

Calculations. 
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Table1:  3D-QSAR predicted activity and training set and test set data of Ligand molecules

Sr.no Ligand name QSAR test pIC50 Predicted Activity PLS 

factors 

1 Ligand 1 Training 5.283 4.894 3 

2 Ligand 2 Training 5.251 4.936 3 

3 Ligand 3 Test 5.274 4.861 3 

4 Ligand 4 Test 5.339 4.892 3 

5 Ligand 5 Test 5.314 5.036 3 

6 Ligand 6 Training 5.385 4.961 3 

7 Ligand 7 Training 5.248 4.705 3 

8 Ligand 8 Training 5.199 4.854 3 

9 Ligand 9 Test 5.391 4.950 3 

10 Ligand 10 Test 5.213 4.886 3 

11 Ligand 11 Training 6.206 5.843 3 

12 Ligand 12 Test 5.236 5.047 3 

13 Ligand 13 Test 5.245 4.826 3 

14 Ligand 14 Training 5.209 4.852 3 

15 Ligand 15 Training 5.263 5.153 3 

16 Ligand 16 Training 5.255 4.822 3 

17 Ligand 17 Test 5.211 4.855 3 

18 Ligand 18 Training 5.201 4.826 3 

19 Ligand 19 Test 5.195 4.762 3 

20 Ligand 20 Training 5.197 4.882 3 

21 Ligand 21 Training 5.259 4.822 3 

22 Ligand 22 Training 5.288 4.802 3 

23 Ligand 23 Training 5.247 4.904 3 

24 Ligand 24 Test 5.258 5.016 3 

25 Ligand 25 Test 5.218 4.752 3 

26 Ligand  26 Test 5.305 4.177 3 

27 Ligand 27 Training 5.268 4.099 3 

28 Ligand 28 Training 5.321 4.016 3 

29 Ligand 29 Training 5.472 5.051 3 

30 Ligand 30 Test 5.422 4.515 3 

31 Ligand 31 Test 4.899 4.170 3 

32 Ligand 32 Training 5.485 5.042 3 

33 Ligand 33 Test 5.424 4.135 3 

34 Ligand 34 Test 4.793 4.639 3 

35 Ligand 35 Training 5.252 4.138 3 

36 Ligand 36 Training 5.268 4.111 3 

37 Ligand 37 Training 4.951 3.999 3 

38 Ligand 38 Test 5.488 4.033 3 

39 Ligand 39 Training 5.437 4.323 3 

40 Ligand 40 Test 5.283 4.894 3 
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Fig 1: The Chemical Structure Of HEQ-1 Ligand. 

Fig 2: 3D structure of HEQ-1 ligand molecule 

Ligand Preparation:  

The preparation of ligands was carried out using 

the LigPrep 2.4 module of the Schrödinger Suite 

(2010). Initially, the 2D chemical structures of the 

compounds were imported and converted into 

accurate 3D geometries. Energy minimization was 

performed using the MacroModel molecular 

mechanics force field (MMFF) to ensure realistic 

representations of the ligands. Since ligands are 

inherently flexible, a diverse set of 

thermodynamically accessible conformations was 

generated. The conformational search was 

executed using MacroModel’s torsional sampling 

algorithm, followed by minimization with the 

MMFF94 force field under a distance-dependent 

dielectric solvent model. Ionization states at 

physiological pH (7.0 ± 0.5) were assigned using 
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the Epik 2.1 module, which systematically adds or 

removes protons based on pKa predictions. For 

each ligand, a maximum of 100 conformers were 

generated with an initial 100-step pre-

minimization and a 50-step post-minimization. 

Conformers within a relative energy window of 

11.4 kcal/mol (50 kJ/mol) were retained, ensuring 

structural diversity while discarding high-energy 

states. Conformers with atomic deviations less 

than 2.0 Å were filtered for further analysis. 

Molecular properties such as molecular weight, 

hydrophobicity (logP), hydrogen bond 

donors/acceptors, solvent-accessible surface area, 

and polar surface area were computed using the 

QikProp 3.3 module to assess drug-likeness and 

ensure compliance with pharmacokinetic 

requirements. 

Protein Preparation 

The BCL-2 protein (PDB ID: 1G5M) crystal 

structure was retrieved from the Protein Data Bank 

and prepared using the Protein Preparation Wizard 

in Schrödinger Suite. Missing hydrogen atoms 

were added, and protonation states of amino acid 

residues such as Asp, Glu, Arg, Ser, and His were 

corrected to reflect physiological conditions. 

Missing side chains and loops were reconstructed 

using the Prime module. Energy minimization of 

the protein was performed with the Impact 

Refinement module using the OPLS-2005 force 

field, eliminating steric clashes and optimizing 

hydrogen-bonding networks. A receptor grid was 

generated around the BH3 binding groove, defined 

by the coordinates of the co-crystallized ligand. 

This grid provided the spatial constraints for 

docking simulations. 

Pharmacophore Site Creation 

Pharmacophore modeling was performed in 

PHASE (Schrödinger Suite). Each ligand was 

represented as a 3D array of features essential for 

protein–ligand interactions. The six 

pharmacophore features considered were: 

• Hydrogen bond acceptor (A) 

• Hydrogen bond donor (D) 

• Hydrophobic group (H) 

• Negatively ionizable group (N) 

• Positively ionizable group (P) 

• Aromatic ring ® 

The active analogue approach was employed to 

identify common pharmacophoric patterns. 

Ligands were aligned based on their 

pharmacophore features, and common 

pharmacophores were selected using a tree-based 

partitioning algorithm, which clusters 

pharmacophores based on intersite distances. 

 Identification of Common Pharmacophore 

Hypotheses 

From the pool of generated pharmacophores, 

common hypotheses were identified. The final set 

of variants included AAHHR, AAHRR, AARRR, 

AHHRR, AHRRR, and HHRRR. Among these, 

the best hypotheses (AAHRR, AARRR, and 

AHRRR) were selected based on scoring metrics. 

Pharmacophore models were evaluated by their 

ability to differentiate active from inactive ligands. 

The alignment quality was assessed using the Root 

Mean Square Deviation (RMSD ≤ 1.2 Å), while 

overall performance was determined using the 

survival score, which combines geometric 

alignment, activity correlation, and hypothesis 

selectivity. 

3D-QSAR Model Development:  
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3D-QSAR models were constructed based on the 

best pharmacophore hypotheses. The dataset was 

randomly divided into a training set (70%) and a 

test set (30%). Atom-based 3D-QSAR modeling 

was employed, as it provides more intuitive 

insights into structure–activity relationships than 

pharmacophore alignment alone. In atom-based 

QSAR, molecules are represented as van der 

Waals spheres, and each atom is classified into 

categories: 

• D = hydrogen-bond donor 

• H = hydrophobic/non-polar atom 

• N = negatively ionizable 

• P = positively ionizable 

• W = electron-withdrawing (hydrogen bond 

acceptor) 

• X = miscellaneous 

These classifications were placed on a 3D cubic 

grid with 1.0 Å spacing, resulting in a binary 

matrix representation. The data was modeled using 

Partial Least Squares (PLS) regression, limiting 

the number of factors to one-third of the training 

set size. The best model was identified based on 

high R² (goodness of fit), Q² (predictive ability), 

and low RMSE values. Validation was performed 

by predicting the activities of the test set 

compounds. Robustness was confirmed through 

randomization tests and external validation. 

Molecular Docking Studies 

Molecular docking simulations were performed 

using the GLIDE (Grid-Based Ligand Docking 

with Energetics) module of the Schrödinger Suite 

(2010). Receptor grids were defined around the 

BH3 binding groove of BCL-2, and ligands were 

docked using Extra Precision (XP) mode to 

achieve accurate predictions. 

The docking workflow consisted of: 

1. Grid generation around active site residues. 

2. Ligand docking using the GLIDE XP 

algorithm, which accounts for steric clashes, 

electrostatics, hydrogen bonding, hydrophobic 

contacts, and desolvation penalties. 

3. Scoring using the GlideScore function 

G Score = 0.065 \times E_{\text{vdW}} + 0.130 

\times E_{\text{Coulomb}} + \text{H-bonding} + 

\text{Hydrophobic interactions} + \text{Penalty 

terms}. Docking poses were further minimized, 

and post-docking energy refinement was 

performed using the Prime MM-GBSA method, 

which estimates binding free energies by 

combining molecular mechanics with implicit 

solvation models. 

ADMET and Drug-Likeness Evaluation 

Docked ligands with favorable binding energies 

were subjected to ADMET (Absorption, 

Distribution, Metabolism, Excretion, and 

Toxicity) analysis using QikProp 3.3, Swiss 

ADME, and pkCSM. Evaluated parameters 

included: 

• Lipinski’s Rule of Five compliance 

• Gastrointestinal absorption and blood–brain 

barrier permeability 

• CYP450 inhibition potential 

• Predicted toxicity (mutagenicity, 

hepatotoxicity, carcinogenicity) 
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RESULTS AND DISCUSSION  

3D-QSAR modeling was performed by dividing 

the dataset into a training set (21 compounds) and 

a test set (19 compounds). Pharmacophore 

analysis generated several hypotheses, among 

which the five-featured AAHRR hypothesis was 

selected, comprising one hydrophobic group, three 

hydrogen bond acceptors, and four aromatic ring 

features (Figure 3). Scoring and ranking of 

pharmacophores identified the best ligand 

hypothesis based on activity (-log10 IC₅₀) and 

conformational energy. The large difference 

between scores of active and inactive molecules 

confirmed the discriminative ability of the model. 

3D chemical structure alignment was carried out 

using the PHASE module (Figure 4). Statistical 

validation revealed a significant regression model 

(F = 62.5, P < 0.05), with low standard deviation 

(SD = 0.285) and RMSE (0.3211), indicating 

robustness. The cross-validated correlation 

coefficient (Q² = 0.5147) confirmed the predictive 

power of the model (Table 2). Visualization of 

QSAR cubes (Figure 5) showed blue regions 

corresponding to favorable features enhancing 

activity, while red regions indicated unfavorable 

structural contributions. Predicted versus observed 

activity scatter plots further supported the model 

reliability (Figure 6). Glide XP docking of the 

most active compound (HEQ-1) with BCL-2 

protein revealed a stable binding interaction, 

particularly with ARG98 residues, achieving a 

docking score of –6.12 kcal/mol (Figure 7). 
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Fig 7: Docking interaction between Bcl-2 protein with HEQ-1 Ligand potential affinity of docking Glide 

Score (-6.12). 

CONCLUSION:  

In this study, a comprehensive QSAR and 

molecular docking approach was applied to 

identify and characterize potential BCL-2 

inhibitors with anticancer activity. Pharmacophore 

modelling generated several hypotheses, among 

which the AAHRRR hypothesis was found to be 

most significant, comprising three hydrogen bond 

acceptors and four aromatic rings. This model 

demonstrated strong predictive ability in 

distinguishing active from inactive molecules and 

provided valuable insights into the spatial 

arrangement of features essential for binding 

affinity. Ligand-11 (HEQ-1) emerged as the most 

potent compound, supported by a robust atom-

based 3D-QSAR model that highlighted 

favourable and unfavourable regions influencing 

biological activity. Statistical validation confirmed 

the reliability and predictive power of the model, 

while docking studies further revealed stable 

binding interactions between HEQ-1 and the BCL-

2 protein, particularly at the ARG98 residue. 

Together, the integration of QSAR, 

pharmacophore modelling, and docking studies 

established a clear structure–activity relationship, 

enabling rational prediction of ligand affinity 

toward the BCL-2 protein. This approach not only 

facilitates the identification of promising lead 

molecules but also provides a scientific basis for 

the design and development of novel BCL-2 

inhibitors. Furthermore, the study lays the 

groundwork for future synthesis of quinazoline-
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based derivatives that may yield more potent and 

selective anticancer agents. 
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