

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

[ISSN: 0975-4725; CODEN(USA): IJPS00] Journal Homepage: https://www.ijpsjournal.com

Review Paper

Review on Nose-To-Brain Drug Delivery

Umesh Jaybhaye*, Shradhha Kayande, Ashwini Waybhase

Swastyadarpan Pratishthan's Shantiniketan College of Pharmacy, Dhotre (BK) Ahmednagar, Maharashtra - 414304

ARTICLE INFO

Published: 29 Nov 2025

Keywords:

nasal drug delivery Alzheimer's disease Noseto-brain delivery Drug delivery strategies

DOI:

10.5281/zenodo.17762345

ABSTRACT

A major limiting factor for the treatment of central nervous system (CNS) related diseases is the incapability for medicine substances to cross the blood- brain hedge. Some specifics may retain cure- limiting systemic side goods that hamper their capability to reach maximum effective attention in the CNS. Over the last several decades, scientists have studied the capability for medicines to be transported from the nose directly to the brain, and compared to intravenous injections, numerous studies have reported advanced brain attention from phrasings administered intranasally. The primary focus of this paper is to review the expression and device approaches that have been reported to increase medicine delivery into the CNS through the nose- to- brain delivery pathway.

INTRODUCTION

Neurological diseases are the leading cause of disability worldwide, adding the burden on healthcare⁽¹⁾. Brain medicine delivery is challenging due to the Blood Brain hedge (BBB), the complexity of the brain, and safety and toxin enterprises. Nose- to- brain medicine delivery has surfaced as a novel,non-invasive route with advantages over systemic medicine administration similar as Elusion of systemic toxin, better side effect profile,non-invasiveness, short quiescence, and increased Central Nervous System (CNS)

bioavailability. Nose- to- brain medicine delivery bypasses the BBB through neural connections among the olfactory epithelium, olfactory bulb, trigeminal whim-whams, and the brain (2).

Define: Nose to brain drug delivery system is a novel invasive technique that allows direct transportation of therapeutic drugs from the nasal cavity to the brain through the olfactory and trigeminal neural pathways by passing the bloodbrain barrier ⁽³⁾. This system enhance drug absorption in the brain, provides faster onset of action and minimizes systemic side effect ⁽⁴⁾.

Address: Swastyadarpan Pratishthan's Shantiniketan College of Pharmacy, Dhotre (BK) Ahmednagar, Maharashtra - 414304

Email : umeshjaybhaye22@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

^{*}Corresponding Author: Umesh Jaybhaye

Alzheimer's Disease: Number of patients suffering from neurodegenerative diseases and other central nervous system (CNS) disorders has shown a continuous increase that is associated with the aging population during the last decade ⁽⁵⁾. Alzheimer's disease (AD), Parkinson's disease, schizophrenia, migraine, malignant glioma, vestibular schwannoma, meningitis, and multiple sclerosis are representative CNS-related diseases ⁽⁶⁾.

Neurofibrillary tangles and plaques containing βamyloid is what biologically characterizes Alzheimer's disease (AD) (7). The classic presentation of AD, a hereditary and sporadic neurodegenerative disease, is amnesty" cognitive impairment; its less prevalent variations, on the other hand, induce non-amnestic cognitive impairment (8). Although AD is a prevalent cause of cognitive impairment that develops in midlife and late life, other neurodegenerative and cerebrovascular disorders can alter its clinical impact (9). Between 60 and 70 percent of all occurrences of cognitive impairment in the senior population are caused by Alzheimer's disease (AD), a progressive neurodegenerative illness (10).

It is typified by a slow deterioration in behavioural, cognitive, and memory abilities that eventually results in total dependence ⁽¹¹⁾. It is estimated that 2.3 million persons in the US have Alzheimer's disease (with a range of 1.09 to 4.8 million. The number of cases increases every five years after age 60. While a variety of progressive and fatal neurological conditions were known at

that time, including senile dementia, the early age four years later1.

SYMPTOMS:

Alzheimer's disease causes symptoms that get worse over time, and they are different from the normal changes that happen as people get older (12).

These symptoms often start with memory problems:

- Memory Loss: Forgetting new information, asking the same questions again, and losing things are early signs (13).
- Cognitive Decline: Trouble with solving problems, handling money, or doing daily tasks that used to be simple (14).
- Disorientation: Getting confused about time, dates, or places, even in places that are very familiar.
- Language Problems: Difficulty finding the right words, keeping up in conversations, or naming objects (15).

CAUSES & RISK FACTORS OF AD:

Causes & Risk Factors of AD

Causes	Risk Factor
A build of amyloid plaques	Poor
(misfolded beta-pleated	Cardiovascular
protein)	health
And tau tangles in the brain	
Genetics	DOWN Syndrome
Environmental factors	Head ingury
	Family history

PATHOPHYSIOLOGY:

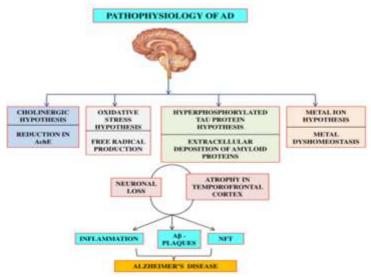


Fig: Pathophysiology Of AD

ALZHEIMER'S DISEASE (AD) PATHOGENESIS:

The pathogenesis of Alzheimer's disease involves two major hypotheses that explain how neuronal damage and cognitive decline occur (16):

1. Amyloid Cascade Hypothesis:

This is one of the most widely accepted explanations for Alzheimer's disease. According to this hypothesis (17):

Intracellular deposition of neurofibrillary tangles (NFT) and extracellular deposition of amyloid-beta (A β) plaques Lead to a series of damaging cellular events.

2. The Cholinergic Hypothesis:

According to this theory, the primary cause of Alzheimer's disease is a lack of the neurotransmitter acetylcholine (Ach), which is essential for memory and learning (18).

It includes:

Decrease in the enzyme that breaks down acetylcholine, acetylcholinesterase (unbalanced enzyme activity impacts signalling) (19).

Acetylcholine neurotransmitter levels drop as a result, which leads to: Impairment of the transmission of nerve impulses, these abnormal protein accumulations cause, Disruption of calcium (Ca²⁺) Homeostasis, Overproduction of free radicals, leading to oxidative stress ⁽²⁰⁾.

WHY DIAGNOSIS IS IMPORTANT.

Early Interventions: An early diagnosis gives you more time to begin treatments, seek support, and plan for future care. Excluding Other Causes: Many illnesses can cause memory and thinking issues, and a comprehensive diagnosis can help identify and cure these conditions if they exist.

TREATMENT:

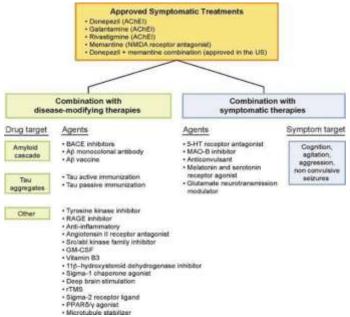


Fig. Treatment

Approved Symptomatic Treatments for Alzheimer's Disease Current authorized symptomatic therapies include: Donepezil (Ache) Galantamine (Ache) Rivastigmine (Ache). Memantine (an NMDA receptor antagonist). Donepezil + Memantine combination

Combination with Disease Modifying Therapies Drug Targets and Agents. 1. The amyloid cascade: BACE Inhibitors A β monoclonal antibody. A β vaccination 2. Tau Aggregate: Tau active immunization. Tau passive immunization. 3. Other targets: Tyrosine kinase inhibitors RAGE inhibitors Anti-inflammatory agents (21). Angiotensin II receptor antagonist Sc/Abl kinase

family inhibitor GM-CSF Vitamin B3 11βhydroxysteroid dehydrogenase inhibitor. Sigma-1 chaperone agonist Deep Brain Stimulation Repetitive transcranial magnetic stimulation (rTMS). Sigma-2 receptor ligand. PPARy agonist A microtubule stabilizer --- Combination of Symptomatic Therapies Agents: 5-HT receptor antagonist, MAO-B inhibitors, Anticonvulsant and serotonin receptor agonists (22). Glutamate Neurotransmission Modulator Symptom Targets: Cognition Agitation Aggression Non-convulsive seizures (23).

RECENT ADVICES:

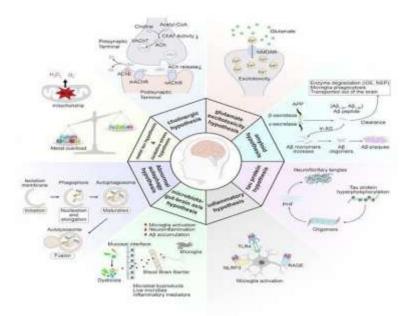
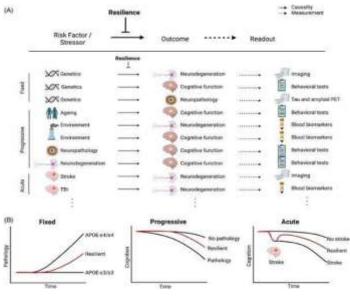


Fig: Recent Advices in Alzheimer's Disease


Disease-modifying Therapies Monoclonal Antibodies: FDA-approved medications such as lecanemab and aducanumab target and eliminate amyloid-beta in the brain, halting disease development. Future Targets: Other antibodies targeting amyloid-beta and the tau protein, both of which are associated with Alzheimer's disease, are being studied (24).

CHALLENGES AND FUTURE DIRECTION:

Challenges and Future Directions. Blood-Brain Barrier (BBB) Penetration: One key problem is

effectively getting medications over the BBB to the brain Amyloid-Associated Imaging Abnormalities (ARIAs) (25) Monoclonal antibody therapies have been linked to adverse effects such as cerebral edema and microhaemorrhages. need for a cure: Current disease-modifying medications assist control the condition, but they do not cure Alzheimer's or repair damaged neurons (26).

NEW DIRECTION OF ALZHEIMER'S DISEASE:

FUTURE STRATEGY:

Fig: Future Strategies of Alzheimer's Disease

REFERENCE

- Feigin VL, Vos T, Nichols E, Owolabi MO, Carroll WM, Dichgans M, Deuschl G, Parmar P, Brainin M, Murray C. The global burden of neurological disorders: translating evidence into policy. The Lancet Neurology. 2020 Mar 1;19(3):255-65.
- 2. Zhang YB, Xu D, Bai L, Zhou YM, Zhang H, Cui YL. A review of non-invasive drug delivery through respiratory routes. Pharmaceutics. 2022 Sep 19;14(9):1974.
- 3. Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood–brain barrier: an excellent platform for brain targeting. Expert opinion on drug delivery. 2013 Jul 1;10(7):957-72.
- 4. Upadhyay RK. Drug delivery systems, CNS protection, and the blood brain barrier. BioMed research international. 2014;2014(1):869269.
- 5. Kesidou E, Theotokis P, Damianidou O, Boziki M, Konstantinidou N, Taloumtzis C, Sintila SA, Grigoriadis P, Evangelopoulos ME, Bakirtzis C, Simeonidou C. CNS ageing in health and neurodegenerative disorders.

- Journal of Clinical Medicine. 2023 Mar 14;12(6):2255.
- 6. Hong SS, Oh KT, Choi HG, Lim SJ. Liposomal formulations for nose-to-brain delivery: recent advances and future perspectives. Pharmaceutics. 2019 Oct 17;11(10):540.
- 7. Armstrong RA. The molecular biology of senile plaques and neurofibrillary tangles in Alzheimer's disease. Folia Neuropathologica. 2009 Jan 1;47(4):289-99.
- 8. Sohrabi HR, Weinborn M. Cognitive impairments in Alzheimer's disease and other neurodegenerative diseases.

 Neurodegeneration and Alzheimer's Disease:
 The Role of Diabetes, Genetics, Hormones, and Lifestyle. 2019 Jun 17:267-90.
- 9. Although AD is a prevalent cause of cognitive impairment that develops in midlife and late life, other neurodegenerative and cerebrovascular disorders can alter its clinical impact.
- 10. Lopez OL, Kuller LH. Epidemiology of aging and associated cognitive disorders: Prevalence and incidence of Alzheimer's disease and other dementias. Handbook of clinical neurology. 2019 Jan 1;167:139-48.

- 11. Gould TJ. Addiction and cognition. Addiction science & clinical practice. 2010 Dec;5(2):4.
- 12. Alzheimer's disease causes symptoms that get worse over time, and they are different from the normal changes that happen as people get older
- 13. Wood RA. Memory loss. British Medical Journal (Clinical Research Ed.). 1984 May 12;288(6428):1443.
- 14. Wadley VG, Okonkwo O, Crowe M, Ross-Meadows LA. Mild cognitive impairment and everyday function: evidence of reduced speed in performing instrumental activities of daily living. The American Journal of Geriatric Psychiatry. 2008 May 1;16(5):416-24.
- 15. Dockrell JE, Messer D, George R. Patterns of naming objects and actions in children with word finding difficulties. Language and Cognitive processes. 2001 Apr 1;16(2-3):261-86.
- 16. Hardy JA, Mann DM, Wester P, Winblad B. An integrative hypothesis concerning the pathogenesis and progression of Alzheimer's disease. Neurobiology of aging. 1986 Nov 1;7(6):489-502.
- 17. An Y, Zhang C, He S, Yao C, Zhang L, Zhang Q. Main hypotheses, concepts and theories in the study of Alzheimer's disease. Life Sci J. 2008;5(4):1-5.
- 18. Chen ZR, Huang JB, Yang SL, Hong FF. Role of cholinergic signaling in Alzheimer's disease. Molecules. 2022 Mar 10;27(6):1816.
- 19. Pérez-Aguilar B, Marquardt JU, Muñoz-Delgado E, López-Durán RM, Gutiérrez-Ruiz MC, Gomez-Quiroz LE, Gómez-Olivares JL. Changes in the acetylcholinesterase enzymatic activity in tumor development and progression. Cancers. 2023 Sep 19;15(18):4629.

- 20. Kundu B. An Introduction to Neurochemistry: Application to CNS disorders.
- 21. Panza F, Solfrizzi V, Seripa D, Imbimbo BP, Lozupone M, Santamato A, Tortelli R, Galizia I, Prete C, Daniele A, Pilotto A. Tau-based therapeutics for Alzheimer's disease: active and passive immunotherapy. Immunotherapy. 2016 Sep 1;8(9):1119-34.
- 22. D Banister S, Kassiou M. The therapeutic potential of sigma (σ) receptors for the treatment of central nervous system diseases: evaluation of the evidence. Current pharmaceutical design. 2012 Mar 1;18(7):884-901.
- 23. Elnazer HY, Agrawal N. Aggressive Behavior. InNeuropsychiatric Symptoms of Epilepsy 2016 (pp. 99-116). Cham: Springer International Publishing.
- 24. Fatima R, Khan Y, Maqbool M, Ramalingam PS, Khan MG, Bisht AS, Hussain MS. Amyloid-β Clearance with Monoclonal Antibodies: Transforming Alzheimer's Treatment. Current protein & peptide science. 2025 Feb 20.
- 25. Iqbal I, Saqib F, Mubarak Z, Latif MF, Wahid M, Nasir B, Shahzad H, Sharifi-Rad J, Mubarak MS. Alzheimer's disease and drug delivery across the blood–brain barrier: approaches and challenges. European journal of medical research. 2024 Jun 8;29(1):313.
- 26. Hüll M, Berger M, Heneka M. Disease-modifying therapies in Alzheimer's disease: how far have we come? Drugs. 2006 Nov;66(16):2075-93.

HOW TO CITE: Umesh Jaybhaye, Shradhha Kayande, Ashwini Waybhase, Review on Nose-To-Brain Drug Delivery, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 11, 4859-4865. https://doi.org/10.5281/zenodo.17762345