

INTERNATIONAL JOURNAL OF PHARMACEUTICAL SCIENCES

[ISSN: 0975-4725; CODEN(USA): IJPS00] Journal Homepage: https://www.ijpsjournal.com

Review Article

Statistical Study on Daunorubicin

CH. Bindusri*, P. Gayatri Devi, Dr. Y. A. Chowdary, Y. V. Veerendranadh

NRI College Of Pharmacy, Pothavarappadu, Eluru District, Andhra Pradesh, India.

ARTICLE INFO

Published: 11 Jan. 2025 Keywords: Acute myeloid leukemia, acute lymphoblastic leukemia, sarcoma, lymphoma, cardiotoxicity. DOI: 10.5281/zenodo.14631411

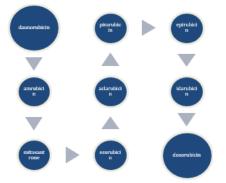
ABSTRACT

Daunorubicin, an anthracycline-class chemotherapeutic agent, plays a pivotal role in managing haematological cancers, particularly acute myeloid leukemia (AML) and acute lymphoblastic leukemia (ALL). This review presents a comprehensive statistical evaluation of daunorubicin's effectiveness and safety, focusing on its pharmacokinetic and pharmacodynamic attributes. The most prevalent side effects included myelosuppression (85%), cardiotoxicity (10-15%), and gastrointestinal complications (60%). Statistical modelling highlighted a marked increase in cardiotoxicity risk with cumulative doses surpassing 550mg/m2 subgroup analysis identified age and comorbidities as significant predictors of treatment outcomes, with older patients and those with older patients and those with underlying cardiac conditions experiencing greater toxicity and reduced response rates. Innovative formulations, such as liposomal daunorubicin, were found to mitigate toxicity while maintaining efficacy. This study emphasizes the necessity of tailoring treatment plans to optimize dosing and patient selection, thereby improving therapeutic success and minimizing adverse events. The findings support further investigation into cardioprotective measures and personalized treatment strategies to enhance the clinical utility of daunorubicin.

INTRODUCTION

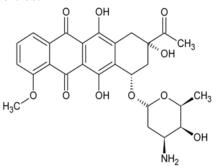
Daunorubicin structural and molecular descriptors and their activity on DNA suppression:

Daunorubicin belongs to the class of anthracycline antibiotics and is utilized predominantly in chemotherapy for treating varieties of cancers such as leukaemia and solid tumours. Anthracycline,


including daunorubicin, exact their therapeutic effect by binding between DNA base pairs, inhibiting the action of topoisomerase II, and including the production of free radicals that provoke DNA damage in cancer cells, ultimately resulting their demise.

*Corresponding Author: CH. Bindusri

Email : bindusrich113@gmail.com


Address: NRI College Of Pharmacy, Pothavarappadu, Eluru District, Andhra Pradesh, India.

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Fig:1Daunorubicin Classification is classified from Anthracycline^[1]

Daunorubicin, a member of the anthracycline class, is renowned for its intricate molecular architecture robust anti-cancer properties:

Molecular Compostion: It features a tetracyclic aromatic ring system with identified rings A, B, C, and D. attached is a daunosamine sugar moiety, enhancing solubility and influencing its pharmacokinetics. Multiple hydroxyl (- OH) groups augment its reactivity, pivotal for cellular interactions. The quinone structure within rings C and D instigates redox, generating reactive oxygen species (ROS) that impaired DNA integrity. exhibits chirality, with the L-Daunorubicin enantiomer holding therapeutic efficacy.

Mechanistic operations: - DNA intercalation disrupts replication and transcription, impeding cancer cells progression topoisomerase II inhibition hampers DNA unwinding, prompting apoptosis. ROS creation through quinone redox cycling intensifies DNA impairment and cytotoxicity. cellular entry via diffusion and active transport focuses accumulation within nuclei, intensifying DNA harm. Board-spectrum efficacy encompasses leukaemia's, lymphomas and solid tumours, tempered by potential cardio toxicity and side effects. In conclusion, daunorubicin standards as a potent chemotherapeutic by means apoptosis induction and suppression of cancer cells proliferation via DNA impairment and essential cellular process interference. ^[3] Significance of Daunorubicin's among anthracycline

Pioneering role: Daunorubicin was one of the first anthracycline introduced into clinical practice, setting the stage for other drugs like doxorubicin and epirubicin.

Leukaemia treatment: It is highly effective in treating acute myeloid leukaemia (AML) and acute lymphoblastic leukaemia (ALL), making it a key drug in induction therapy.

Mechanism of action: Daunorubicin intercalates into DNA, disrupts DNA and RNA synthesis, and generates free radicals causing DNA damage, making it highly effective at killing cancer cells.

Combination use: often used with other chemotherapy agents, daunorubicin enhances the efficacy of treatment regimens for various cancers. **Versatility:** while crucial for leukaemia, daunorubicin is also used to treat various solid tumours, expanding its utility.

Research contributions: the development and use of daunorubicin have deepened understand ding of anthracycline chemistry and pharmacology, aiding in the design of new derivatives. **Clinical Importance:** its role in clinical protocols for leukaemia and other cancers highlights its importance. Daunorubicin is a standard component in many chemotherapy regimens. Overall, daunorubicin pioneering role, efficacy, and versatility make it a cornerstone among anthracyclines, gently impacting oncology.^[4]

Paediatric patient^[5]

Remission Rates	Survival Rates
About 80-90% of paediatric patients with AML	5- year Survival Rate: - the 5-year survival rate
achieve complete remission using daunorubicin	for children treated with daunorubicin-based
based regimens.	therapies is approximately 60-70%

Younger Adults (male and female, under 60 years) ^[6]

Remission Rates	Survival Rate
Around 60-80% of younger adults attain	5-year survival rate: - the 5-year survival rate
complete remission with daunorubicin- based	for younger adults treated with daunorubicin
treatments.	based regimens is roughly 40-50%

Geriatric Patient (65 years and other)

Remission Rates:	Survival Rates:
Approximately 40-60% of elderly patients	5-year Survival rate: -the 5-year survival rate for
achieve complete remission with	elderly patients is typically lower, often around
daunorubicin- based treatments, though the rate	10-20%, influenced by factors such as
may be lower due to comorbidities and overall	comorbidities and decreased tolerance to
health status.	intensive chemotherapy.

These statistics offer a general overview based on available clinical data and medical literature. For more precise and current statistics, especially regarding specific subgroups or newer treatment protocols, it is recommended to consult detailed clinical trial data and oncology treatment guidelines.^[7]

Daunorubicin Remediable Cancers:

Types Of Cancers: - There are various types of cancers but few cancers are treated by daunorubicin they are

1.Leukemia

2. Breast Cancer

3.Sarcoma

4. Lymhoma

Leukemia: - leukemia is a cancer that targets the blood and bone marrow. It arises when the body generates excessive abnormal white blood cells, symptoms may include fatigue, frequent infection, easy brushing or bleeding, and anaemia. Leukaemia is categorized into several types, primarily acute or chronic, and further classified based on the affected blood cells (lymphoid or myeloid). Treatment can involve chemotherapy,

Types Of Leukemia: -

radiation therapy, targeted therapy, and stem cell transplantation.^[8]

CNS, lymph nodes, liver, spleen, kidney, lungs, heart.

Site Of Action: - Daunorubicin acts on major sites for treating leukemia are bone marrow, blood,

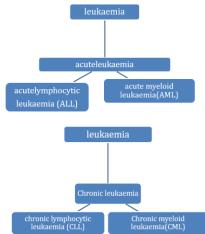


Fig:2 Acute and chronic Breast cancers flow chart in females ^[9]

□Acute Lymphoblastic Leukaemia(All): -

Description	Symptoms	Treatment
progressing leukaemia impacting lymphoid cells, a type of white blood cells. Common in altogether children, but also seen in grown-ups.	fatigue, fever, frequent infections, easy brushing or bleeding, bone and joint pain, tumescent lymph lumps.	chemotherapy, targeted antidote, radiation antidote, stem cell transplantation.

□Acute Myeloid Leukaemia (AML)^[10]

Description	Symptoms	Treatment
A fast-advancing leukaemia	Fatigue, fever, frequent	chemotherapy, targeted
affecting myeloid cells,	infections, easy brushing or	antidote, stem cell transplant
precursors to chromatic blood	bleeding, weight loss, bone and	
cells including red blood cells,	joint pain.	
white blood cells, and platelets.		
Common in largely grown-ups,		
but can also come down in		
children.		

Chronic Lymphocytic Leukaemia (CLL): -

Description	Symptoms	Treatment
a laggardly progressing	hourly asymptomatic in early	observation for early stages,
leukaemia that impacts	stages, but may include fatigue,	chemotherapy, targeted
lymphoid cells. It commonly	blown lymph lumps, weight	antidote, immunotherapy, stem
starts in the bone keynote and	loss, fever, night efforts.	cell transplant.
can spread to blood and other	frequent infections.	_
body belt. Common in elderly		
grown-ups, rare in children.		

Description	Symptoms:	Treatment	
sluggishly progressing	Frequently asymptotic in	observation for early stages,	
leukaemia affecting myeloid	early stages, but may	chemotherapy, targeted	
cells, characterized by the	include fatigue, weight loss,	antidote, immunotherapy,	
Philadelphia chromosome, a	night sweats, fever,	stem cell transplant.	
inheritable abnormality.	splenomegaly (enlarged		
Common in substantially	spleen). treatment targeted		
grown-ups.	remedy with tyrosine kinase		
	impediments, chemotherapy,		
	stem cell transplant.		
	Hairy cell leukemia a rare,		
	slow – growing leukemia		
	where the cells appear		
	'hairy' under a microscope.		
	It generally affects middle-		
	aged grown-ups.		
	T-cell prolymphocytic		
	Leukemia (T-PLL) A rare		
	and aggressive leukemia		
	affecting T-cells, more		
	common in elderly grown-		
	ups.		
	Adult T-cell leukemia/polyp		
	(ATLL) linked to infection		
	by the earthborn T-		
	lymphotropic fungicide		
	(HTLV-1), affecting T-cells		

Chronic Myeloid Lukaemia (CML): -

Statistics Of Leukemia: -

Leukemia incidence and mortality rates vary significantly across different regions and countries. Here are some findings based on recent data: -

Global Incidence: -In 2020, there were approximately 474,519 new cases of leukemia worldwide. The global age standardized incidence rate was 5.4 per 100,000 people. Regions with the highest incidence rates include North America (ASR 10.9), Australia/ New Zealand (ASR 10.4), and Western Europe (ASR 8.5). conversely, the lowest incidence rates were observed in Middle Africa (ASR2.2), western Africa (ASR 2.3), and Eastern Africa (ASR 3.3).

Gender Difference: - Men generally have a higher incidence rate (ASR 6.3) compared to women (ASR 4.5), with greater disparities in regions with higher overall incidence rates.

Income Disparities: - Higher- Income countries tend to have higher incidence rates of leukemia. High-income countries have an ASR of 8.4, compared to 3.4 in low- income countries.

Mortality Rates: - In 2020, there were around 311,594 deaths due to leukemia globally. Mortality rates show less regional variation,

typically ranging from 2.5 to 4.0 per 100,000 people. Western Asia had the highest mortality rate at 4.6 per 100,000, which is 40% higher than the global average of 3.3 per 100,000.^{[12][13]}

TRENDS OVER TIME: - Between 1990 and 2017, the number of newly diagnosed leukemia cases increased globally, but the age-standardized incidence rate (ASIR) slightly decreased by 0.43% per year. Notably, the highest incidence rates

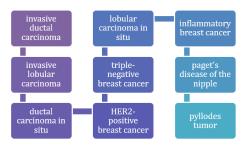
shifted from high SDI (Socio-Demographic Index) regions in 1990 to high-middle SDI regions by 2017.^[13]

Country-Specific-Data: - In 2017, Syria had the highest national ASIR of leukemia at 14.83 per 100,000 followed by the UK, Denmark, and Lebanon. Conversely, countries like Bahrain experienced the most significant decreases in ASIR during the same period.

Country	New cases	Deaths	5-year
	(per	(per	Survival
	100,000)	100,000)	Rate (%)
			2019-2024
United states	14.1	6.6	62.4
United Kingdom	9.7	5.1	59.0
Canada	12.2	5.8	63.0
Germany	10.8	5.4	60.5
France	10.3	4.9	61.2
Japan	11.5	5.2	58.7
Australia	10.5	5.1	64.1
China	4.5	3.1	35.0
India	3.2	2.7	20.0
Brazil	3.2	4.1	40.0
Russia	6.7	5.0	35.0
South Korea	8.9	4.2	54.0
Mexico	8.4	3.5	25.0
Italy	9.9	5.0	59.5
Spain	10.1	5.1	60.0
South Africa	4.8	3.3	30.0
Egypt	3.5	2.8	25.0
Turkey	6.5	4.0	38.0
Argentina	7.2	4.5	45.0
Indonesia	3.0	2.5	18.0

Table:1 Statistical survey on new cases, I	Death and Survival rates
--	--------------------------

These statistics are based on data collected from various sources and reflect the incidence, mortality, and survival trends for leukemia globally.^[14]


Breast Cancer: - Breast cancer originates in the breast tissue and primarily affect women, though men can also be diagnosed. It arises when breast cells begin to grow uncontrollably, leading to the formation of a tumour, which may be felt as a lump. While the precise cause remains unclear, several risk factors, such as genetics, age, hormonal influences, and lifestyle choices, contribute to its development. The are different types of breast cancer, with invasive ductal carcinoma being the most prevalent. Common symptoms include a noticeable lump, alterations in breast shape or size and unusual nipple discharge. Detecting breast cancer early through mammograms and self- examinations can greatly enhance treatment success. Standard treatment approaches include surgery, radiation. chemotherapy, and hormone therapy, tailored to

the cancers stage and type. Ongoing research is focused on improving understanding and treatment options, ultimately striving for better patient outcomes and quality of life.^[15]

Site Of Action: - Daunorubicin acts on major sites for treating breast cancer are bone marrow, blood,

CNS, lymph nodes, liver, spleen, kidney, lungs, heart.^[16]

Types Of Breast Cancer: - Breast cancer are observed in both females and males as following types: -

Fig:3 Types of Breast cancer in females

Fig:4 Types of Breast cancer in Males

changes

Types Of Female Breast Carcinoma:		na: - Invasive Due	: - Invasive Ductal Carcinoma (IDC): -	
	Description	Symptoms	Treatment	
	Most common type, starts in	lump in the breast, changes in	surgery, chemotherapy,	
	the milk channels and invades	breast shape or size, skin	radiation, hormone antidote	

Invasive Lobular Carcinoma (ILC): -

enclosing tissue.

Description	Symptoms	Treatment
begins in lobules (milk	thickening of breast tissue,	alike to IDC surgery,
producing glands) and can	now no distinct lump.	chemotherapy,
spread		radiation

Ductal Carcinoma in Situ (DCIS): -

Description	Symptoms	Treatment
Non-invasive, confined to	hourly no symptoms; may	surgery (lumpectomy or
tubes without spreading	determine through	mastectomy), radiation
	mammograms	

Triple – Negative Breast Cancer:

Description	Symptoms	Treatment
Lacks oestrogen, progesterone	alike to IDC, more aggressive	chemotherapy, surgery,
receptors and HER2 protein		radiation; no hormone therapy

Her2 – Positive Breast Cancer: -

Description	Symptoms	Treatment
Overexpression of HER2	Alike to IDC, more aggressive	Targeted antidotes (like
protein, can be aggressive		trastuzumab), chemotherapy

Inflammatory Breas Cancer (IBC): -

	Description	Symptoms	Treatment
	Rare and aggressive, causes	Warmth, skin changes, and fast	chemotherapy, surgery,
	breast to go red and blown	growth	radiation
)	t's Disease of The Ninnley -		

Paget's Disease of The Nipple: -

Description	Symptoms	Treatment
Affects the nipple and areola, constantly associated with	Itching, reddishness, flaking or discharge from the nipple	Surgery (lumpectomy or mastectomy), may include
DCIS or invasive cancer.	discharge from the inpple	radiation

Phyllodes Tumor: -

Description	Symptoms	Treatment
Rare, can be benign or	mobile lump in the breast	Surgical disposal, monitoring
malicious; grows in connective		
tissue		

Metaplastic Breast Cancer: -

Description	Symptoms	Treatment
Rare, contains different types	Hard lump, skin changes	Surgery, chemotherapy, but
of cells; can be aggressive		hourly less responsive to
		standard treatments

Types Of Breast Cancer in Males: -

Invasive Ductal Carcinoma (IDC): -

Description	Symptoms	Treatment
Correspondent to IDC in	Lump in the breast, changes in	Surgery, chemotherapy,
females, starts in the channels	skin or nipple	radiation, hormone antidote

Ductal Carcinoma in Situ (DCIS): -

Descrption	Symptoms	Treatment
non-invasive condition	Again, and again	Surgery, may involve
confined to channels	asymptomatic; detected through imaging	radiation

Lobular Carcinoma: -

Description	Symptoms	Treatment
Rare in males; arises in lobular	again, and again no distinct	Surgery, perhaps radiation
tissue	lump, implicit breast changes	

Incendiary Breast Cancer (IBS): -

Description	Symptoms	Treatment:
Genuinely rare in men,	Swelling, brightness, warmth	Chemotherapy followed by
aggressive type.		surgery

Paget's Disease of The Nipple: -

Description	Symptom	Treatment
Rare form affecting the nipple	Itching, discharge, changes in	Surgery, may include radiation
area	nipple skin	General symptoms of breast
		cancer in both genders: -
		Lump or mass in the breast

Change in breast shape or size
Skin dimpling or aggro
Nipple discharge

Statistics Of Breast Cancer: -

Global occurrence breast cancer is the most common cancer among women completely, with over 2 million new cases each cycle.

Table.2 Statistics data based on genuer						
Demographic	Incidence rate (per 100,000)	Death rate (per 100,000)	5- year survival rate 2019-2024			
Females	129.1	20.3	90%			
Males	1.3	0.2	84%			
Children	Rare	Rare	-			
Adults (18-64)	Majority of cases	Varies by age group	85%			
Geriatric (65+)	Higher incidence	Higher death rate	85%			
Total	Varies by region	19.9	90%			

Table:2 statistics data based on gender

By gender: -

Females: -Occurrence breast cancer primarily affects women, representing about 99 of cases, date hazard. around 1 in 8 women (12.5) will be diagnosed with breast cancer during their duration. Survival rates early findings and treatment advancements have led to a 5 - cycle relative survival rate of about 90 in high-income countries. **Males:** - Occurrences although, men can develop breast cancer, constituting about 1 of all cases.

Hazard factors contributing factors include inborn mutations (e.g. BRCA2) family history, radiation exposure, and hormonal imbalances.

Survival rates due to lower knowledge, breast cancer in men is hourly diagnosed at subsequent stages, which can negatively impact survival rates.^[21]

By age: -

Geriatric Population (65 Cycles and Old): - occurrence the hazard of developing breast cancer increases with age, with the top rates seen in women grew 65 and aloft.

Challenges again grown -ups may feel added complications, alike as comorbidities, which can affect treatment and outgrowths.

Survival rates although slightly lower than in younger population, effective treatment is still vital for again grown-ups.

Adults (18 -64 ages): - constancy last breast cancer cases are diagnosed in women aged 40-64.web regular mammograms and complexionquizzes are vital for early finding in this age group. Survival rates adolescent women (under 40) may encounter more aggressive forms of breast cancer, but overall survival rates are high with proper treatment.

Children and adolescents: - chronicity breast cancer is exceeding rare in children and adolescents. Cases when it occurs, it's over and over associated with hereditary conditions or radiation exposure. Treatment paediatric breast cancer requires technical treatment and long- term follow-up due to possible movables on growth and development.^[22]

Country - Specific- Data: -

Tublets Statistics data susce on country specificity						
Country	Incidence rate (per 100,000)	Death rate (per 100,000)	5-year survival rate 2019-2024			
United states	129.1	20.3	90%			
Canada	98.3	18.7	88%			
United	95.0	17.1	85%			
Kingdom						
Australia	94.2	16.5	87%			
India	25.8	12.7	66%			
China	36.1	8.8	75%			
Brazil	62.9	15.2	78%			
Germany	62.5	15.6	87%			
Japan	63.1	9.3	85%			
South Africa	45.3	22.6	65%			

Table:3 Statistics data based on country specificity

These statistics are based on data collected from various sources and reflect the incidence, mortality, and survival trends for leukemia globally.^[23]

Sarcoma: - Sarcoma is a cancer that develops in connective tissues, including bones, muscles, fat, and blood vessels. It differs from carcinomas, which come from epithelial cells, and is relatively rare. Sarcoma can be categorized into several types, such as osteosarcoma (affecting bones), liposarcoma (affecting fat), and leiomyosarcoma

(affecting smooth muscle). Symptoms vary based on the tumour's location and may involve swelling, pain or the presence of a lump. Treatment usually includes surgery, radiation and chemotherapy, tailored to the specific type and stage of the cancer.^[24]

Site Of Action: -Daunorubicin acts on major sites for treating sarcoma are bone marrow, blood, CNS, lymph nodes, liver, spleen, kidney, lungs, heart.^[25]

Statistics Data: -Country- Specific- Data: -

CH. Bindusri,	, Int. J. of Pharm.	. Sci., 2025, Vo	ol 3, Issue 1, 742-7	71 Review
---------------	---------------------	------------------	----------------------	------------

Country	Incidence rate (per 100,000 people annually)	5-year survival rate (%) 2019-2024
United states	4.0	65
United Kingdom	3.0	55-60
Germany	3.5	60-65
France	2.5	60
Japan	2.2	70
Australia	3.5	60-65
Canada	4.0	65
Italy	3.0	60-65
Spain	2.8	60
Sweden	3.5	65
Brazil	2.5	50-55
India	1.5-2.0	50
South Korea	2.0	65-70
China	1.5	55-60 (urban
		areas)
Mexico	2.2	50-55

Table: - 4 These statistics are based on data collected from various sources and reflect the incidence, mortality, and survival trends for leukemia globally.

to-female rate varying by specific sarcoma subtype. Overall, about 60 of sarcoma cases occur in males and 40 in females.

By Gender: - Sarcoma are generally more common in males than in females, with the male-

Children And	Young Adults	Adults	Geriatric Population	
Adolescents:				
Sarcoma is the most	Adolescents and	Sarcoma are less	Occurrence rates can	
common type of solid	young adults (ages 15-	common in aged	increase in geriatric	
growths in children.	39) also feel	grown-ups, but	grown-ups, especially	
Rhabdomyosarcoma is	significantly	specific subtypes like	for soft tissue	
the most going type	frequency, particularly	leiomyosarcoma and	sarcomas. Those aged	
among this age group,	for osteosarcoma and	liposarcoma can befall	65 and old tend to	
with an occurrence of	Ewing sarcoma, with	more often in middle-	present with more	
about 4-5 cases per	rates ranging from 1-2	aged and elderly	aggressive forms of	
million in children	cases per million.	populations, with an	sarcoma.	
matured 0-14 years.		overall occurrence of		
		about 3-4 cases per		
		100,000 beings.		

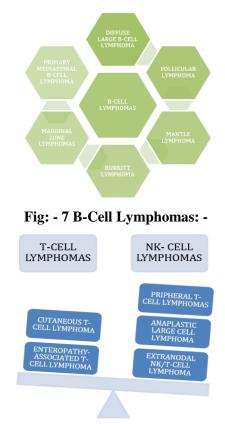
Lymphoma: - Lymphoma is a cancer that develops in the lymphatic system, part of the immune system. It mainly targets lymphocytes, a type of white blood cells crucial for fighting infections. There are two primary forms: -

Hodgkin lymphoma, marked by Reed-Sternberg cells, and non – Hodgkin lymphoma, a more common and varied group lacking these cells. Symptoms often include swollen lymph nodes, fever, night sweats, weight loss, fatigue and

itching. Treatment depends on the lymphoma's type and stage and may involve chemotherapy, radiation therapy, targeted therapy, targeted therapy, and sometimes stem cell transplant.^[29]

Site Of Action: - Daunorubicin acts on major sites for treating lymphoma are bone marrow, blood,

CNS, lymph nodes, liver, spleen, kidney, lungs, heart.


Types of lymphoma: - The are several types of lymphoma, broadly categorized into two main groups: -

HODGKIN LYMPHOMA (HL) and NON-HODGKIN LYMPHOMA(NHL): -

Fig: - 6 Hodgkin Lymphoma (HL)

NON -HODGKIN LYMPHOMA (NHL): -NHL based on the type of lymphocyte (B-CELL or Tincludes a diverse group of lymphomas, classified CELL) they originate from and their growth rate.

Hodgkin Lymphoma (HL): -

Classical Hodgkin Lymphoma (CHL): -

Nodular Sclerosis Hodgkin Lymphoma (NSHL): - The most common subtype, characterized by large cancerous Reed-Sternberg cells and bands of connective tissue (sclerosis) dividing the lymph lump.

MixedCellularityHodgkinLymphoma(MCHL): - Features a combination of differenttypes of cells, including Reed -Sternberg cells.Common in elderly grown-ups and people withHIV.

Lymphocyte-RichHodgkinLymphoma(LRHL):- A rare subtype with multiplelymphocytes and countless Reed-Sternberg cells.Hourly institute in upper body lymph lumps.

Lymphocyte-Depleted Hodgkin Lymphoma (**LDHL**): - The rarest subtype, with multiple lymphocytes and abundant Reed-Sternberg cells. More common in old grown-ups and those with HIV.

Nodular Lymphocyte- Predominant Hodgkin Lymphoma (NLPHL): - A rare subtype characterized by large, popcorn-shaped cells. It generally has a slower progression and better prognosis than classical Hodgkin lymphoma.^[30]

Non- Hodgkin Lymphoma (NHL): -

B-Cell Lymphomas: -

Diffuse Large B-Cell Lymphoma (DLBCL): -The most common NHL subtype, characterized by large, fast growing B cells. It's aggressive but major responds well to treatment.

Follicular Lymphoma (FL): -A slow- growing lymphoma that forms in the lymph lumps in a circuitous (follicular) pattern. It can make over into a more aggressive form over time.

ChronicLymphocyticLeukemia/SmallLymphocyticLymphoma(CLL/SLL): - CLLprimarilyaffects the blood and bone core, whileSLL affectslymph lumps. They are slow-growingand have a comparable cellular appearance.

Mantle Cell Lymphoma (MCL): - A rare, aggressive subtype that starts in the mantle zone of Statistical Data of Lymphoma: -

lymph lumps. It's again and again diagnosed at an advanced stage.

Burkitt Lymphoma: - A broadly aggressive lymphoma that big involves the jaw or abdomen. It's linked to the Epstein-Barr venom and is common in children in Africa.

Marginal Zone Lymphoma (**MZL**): - It includes subtypes like mucosa- associated lymphoid tissue (MALT) cancer, which hourly begins in the stomach and is associated with certified inflammation;

Primary Mediastinal B-Cell Lymphoma (**PMBCL**): - A subtype of DLBCL that ordinarily affects adolescent grown-ups and births in the thymus gland in the mediastinum (chest area).^[31]

T-Cell Lymphomas: -

Peripheral T-Cell Lymphomas (PTCL):- A group of aggressive cancers that develop from mature T-cells. The are hourly diagnosed at an advanced stage and have chromatic subtypes.

Cutaneous T-Cell Lymphoma (CTCL): -Include mycosis fungoides and Sezary development, which primarily affect the skin but can spread to other organs.

Anaplastic Large Cell Lymphoma (ALCL): -An aggressive lymphoma that can be systemic or cutaneous. It's characterized by large, anaplastic cells and can be ALK-positive or ALK-negative, moving prognosis.

Other Less Common NHL Subtypes: -

Primary Central Nervous System (CNS) Lymphoma: - A rare lymphoma that starts in the brain, spinal cord, or eyes. It can be either B-cell or T-cell in origin.

Lymphoblastic Lymphoma: - A double- quickgrowing lymphoma that resembles acute lymphoblastic that resembles ACUTE **Lymphoblastic Leukemia** (ALL) and primarily affects children and immature grown-ups.^[32]

Country-Specific-Data: -

Table: - 5 These statistics are based on data collected from various sources and reflect the incidence,

survival rates and deaths for leukemia globally. ¹⁰⁰					
Country	New	Survival rate	Deaths		
	cases	(5-year) in	2019-2024		
		percentage (%)			
United states	83,087	72	20,140		
China	88,200	50	39,500		
India	40,000	60	24,000		
Brazil	12,500	65	6,000		
Russia	14,600	55	7,300		
Japan	14,500	68	6,800		
Germany	14,000	70	6,000		
United	11,600	65	5,200		
Kingdom					
France	10,200	68	4,600		
Italy	12,800	67	5,500		
Canada	9,500	74	2,200		
Australia	6,400	76	1,500		
South Korea	5,000	65	2,200		
Mexico	6,000	55	3,000		
Spain	8,000	68	3,500		
South Africa	5,800	52	2,900		
Argentina	5,200	60	2,400		
Turkey	5,400	60	2,800		
Indonesia	4,000	55	2,200		
Saudi Arabia	2,500	62	1,100		

survival rates and deaths for leukemia globally.^[33]

General Statistics: -

Non-Hodgkin Lymphoma (NHL): -Represent about 4-5 all cancers in the United States. Additional conventional than Hodgkin lymphoma. Estimated 80,470 new cases in the U. S in 2023.life hazard is like 1 in 42 for men and 1 in 52 for women. **Hodgkin Lymphoma** (HL): - comprises about 0.5 of all cancers in the U.S. estimated 8,830 new cases in the U.S in 2023. Life hazard is about 1 in 432 for men and 1 in 454 for women.

Distribution By Age: -

Children And Adolescents	Adults	Geriatric
NHL Accounts for about 5 of	NHL the hazard increase with	NHL appearance rises with
childhood cancers and HL	ages, with about half of cases	age, peaking in those grew 80
most common in days 15-39,	diagnosed in beings 65 or older	and older.
with a peak in the 20s.	and HL shows a bimodal	
	distribution with peaks in	
	young maturity (ages 20-30)	
	and after adulthood (ages 55	
	and other)	

Gender Distribution: -

Non-Hodgkin Lymphoma	Hodgkin Lymphoma
Men evolved continuousness compared to	Men slightly developed chronicity
women.	compared to women.
Women slightly lower frequency than	Women slightly lower chronicity
men.	than men.

Percentage Breakdown: -

Children Adolescents (0-19 Years):	Adults (20-64 Years)	Geriatrics (65 Years)
NHL about 5 of cases and HL about 15-20 cases.	NHL around 50 of cases and HL about 60 of cases.	NHL about 45-50 of cases and HL around 20-25 of cases

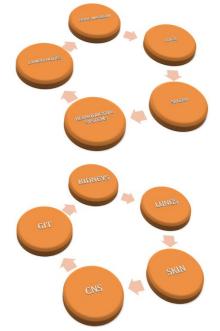


Fig: - 9 Effects of daunorubicin on particular organ for treating leukemia as follows: -

Bone Marrow: -

Mechanis	Site Of	Uses	Adverse	Pharmcodynamic	Pharmacokinetics
m Of	Action		Effects	S	
Action					
Daunorubi	Daunorub	daunorubicin	Common	Onset of action	Administration: -
cin	icin	is by and	adverse effects	daunorubicin acts	Attention
primarily	targets the	large used to	of	enough full tilt	daunorubicin is
intercalates	bone	treat AML	daunorubicin	due to its	administered
into DNA,	marrow	AND ALL it	include	intravenous	intravenously,
breaking	centring	can also be	Myelosuppress	administration.	guaranteeing full
the enzyme	on fast	combined	ion (depleted	Duration of action	bioavailability.
topoisomer	dividing	with other	blood cell	its effects on the	DISTRIBUTION: -
ase II. This	leukemic	chemotherap	output)	bone marrow and	It's generally
prevents	cells.	eutic agents	Cardiotoxicity	leukemic cells can	distributed
DNA from		to enhance	(which can	last for several	throughout the
unwinding		its	lead to	days to weeks.	body, including the
and		effectiveness	congestive	Half-life the	heart, classes, liver
duplicating			heart failure	plasma half-life of	and lungs.
, thereby				daunorubicin is	-

inhibiting	with elongated	around 18.5 hours,	METABOLISM: -
DNA and	use)	though this can	Daunorubicin is
RNA	Nausea and	vary among	primarily
amalgamat	gagging	objects. Overall,	metabolized in the
ion. This	Mucositis	daunorubicin is an	liver to
leading to	(inflammation	effective	daunorubicinol, an
apoptosis	of the mucous	chemotherapeutic	active metabolite.
(programm	membranes)	agent for leukemia	EXCERTION: -
ed cell	Alopecia (hair	treatment, but it's	It's excreted
death) of	loss)	use is associated	through the biliary
hastily	Hepatoxicity	with significant	system into the
dividing	(liver damage)	dangers and side	faeces and also in
cells,	Born tissue	effects that	the urine.
comparabl	necrosis if	challenge careful	
e as cancer	extravasation	monitoring and	
cells.	occurs during	management	
	intravenous	-	
	administration		

Liver: -

Daunorubicin, an anthracycline antibiotic, is broadly applied in treating leukemia, particularly AML and ALL. This overview highlights its employment in leukemia treatment with a focus on its liver movables.

Mechanis	Uses	Adverse	Effects On	Pharmcodymanics	Pharmcokinectics
m Of		Effects	Liver		
Action					
Daunorubi	Acute	Cardiotoxicit	Hepatotoxici	Cytotoxic	Absorption: -
cin	Myeloid	y a major	ty can bring	conditioning	Daunorubicin is
functions	leukemia	concern with	a but liver	induces cytotoxicity	administered
by working	(AML)	daunorubicin	damage,	through DNA	intravenously and
in into	daunorubi	and other	bore out by	intercalation,	has poor oral
DNA	cin is	anthracycline	elevated	topoisomerase II	bioavailability
strands,	continuall	s,	liver	inhibition and free	DISTRIBUTION: -
hindering	У	manifesting	enzymes due	radical generation,	generally
the	combined	as	to direct	contributing to	distributed
synthesis	with other	cardiomyopat	hepatocyte	apoptosis of cancer	throughout the
of DNA	chemother	hy or	venom and	cells. Therapeutic	body, with high
and RNA.	apy	congestive	reactive	window has a	concentrations in
it stabilizes	agents,	heart failure.	oxygen	narrow curative	the liver, spleen,
the	alike as	Myelosuppre	species	window, needing	classes, and heart.
topoisomer	cytarabine	ssion leads to	generation,	careful dosing and	METABLOSIM: -
ase II	, for the	lower blood	monitoring	monitoring to	primarily
complex	induction	cell output,	liver	balance efficiency	metabolized in the
after it	treatment	acting in	function	and venom	liver to
breaks the	protocois	anaemia,	tests are vital		daunorubicinol, an
DNA chain	for ALL,	increased	before and		active metabolite.
for	particularl	infection	during		EXCRETION: -
replication,	y in	hazard and	treatment to		Excreted via acidity
staving off	induction	bleeding.	turn up		and urine. The
the DNA	antidote.	Gastrointesti	hepatoxicity		elimination half-
double	Other	nal venom	prematurely,		life is about 18.5
helix from	cancers	normally	medication		hours.

				1		
being	while	causes	adaptations			
resealed	primarily	nausea,	or expiration			
and	used for	hurling,	may be			
leading to	leukemia,	mucositis	necessary if			
cell death.	daunorubi	and	significant			
This makes	cin can be	diarrhoea.	liver damage			
it	applied in	Alopecia hair	occurs.			
particularl	treating	loss is	Daunorubici			
y effective	other	continually	n is a potent			
against	cancers as	observed.	chemotherap			
briskly	part of	Hepatoxicity	eutic agent			
dividing	chromatic	elevated liver	but its use			
cancer	chemother	enzymes	requires			
cells.	apy	indicating	careful			
	governanc	liver damage	governance			
	es.	or	of adverse			
		dysfunction	effects,			
		can go down.	particularly			
		Secondary	hepatoxicity			
		spleen long	and			
		term use may	cardiotoxicit			
		increase the	y, to			
		danger of	optimize			
		developing	healing			
		secondary	aftereffects			
		cancers.	in leukemia			
			treatment			

Spleen: - Daunorubicin is an anthracycline antibiotic extensively utilized in treating various leukamia, including those involving the spleen.

Mechanism	Site Of	Uses	Adverse	Pharmcodynamics	Pharmcokinetics
Of Action	Action		Effects	v	
Daunorubici	The	Daunorubi	Myelosuppres	Onset of action:	ABSORPTION: -
n	primary	cin is	sion (bone	Effects on cell	Administered
intercalates	site of	mainly	marrow	cycle arrest and	intravenously with
into DNA,	action for	used to	suppression)	apoptosis initiation	immediate
disrupting	daunorub	treat AML	Nausea and	occur shortly after	absorption.
the	icin is the	and ALL	vomiting	administration.	DISTRIBUTION:
synthesis of	DNA	and other	Mucositis	Duration of action:	- Widely
DNA and	within	leukaemia'	(inflammation	- Antitumor effects	distributed
RNA crucial	the cell	s as a part	of the mucous	last for the cell	throughout the
for cancer	nucleus.	of	membrane)	cycle duration of	body, particularly
cell growth.	In	combinatio	Alopecia (hair	malignant cells.	in the spleen,
it also	leukemia	n	loss)	Peak plasma	liver, kidneys, and
inhibits	involving	chemother	Cardiotoxicity	concentration: -	bone marrow.
topoisomera	the	apy	(damage to	Achieved rapidly	METABOLISM: -
se II ,	spleen,	regimens.	the heart	after intravenous	Mainly
causing	daunorub		muscle)	administration.	metabolized by
DNA strand	icin				the liver into

		n		
breaks,	targets		Therapeutic	active and inactive
leading to	malignan		window: - Dosage	metabolites.
the	t white		is carefully	EXERCTION: -
inhibition of	blood		calibrated to	Primarily excreted
nucleic acid	cells		optimize efficacy	through bile and
synthesis	found in		while minimizing	faces, with a
and the	the bone		toxicity, especially	minor amount
induction of	marrow,		cardiotoxicity.	excreted in urine.
apoptosis in	periphera		Daunorubicin's	Half- life: -
cancer cells.	l blood		effectiveness in	Approximately
	and		treating spleen	18.5 hours for the
	spleen		leukemia lies in its	terminal
	_		capacity to target	elimination phase.
			rapidly dividing	
			cells, effectively	
			eradicating	
			cancerous cells in	
			the spleen and other	
			affected areas.	
			However, it's use	
			requires careful	
			monitoring and	
			management due to	
			potential serious	
			side effects	

Lymph Nodes: -

Mechanism	Effects On	Uses:	Adverse	Pharmacodynami	Pharmcokinetics
Of Action	Lymph Nodes		Effect	CS	
Daunorubici	In leukemia	AML often	Hematologic:	Onset of action: -	Absorption: -
n works by	treatment,	used in	-	Rapid, affecting	Given
intercalating	daunorubicin	combination	Myelosuppre	dividing cells soon	intravenously
into DNA,	targets rapidly	with ither	ssion,	after	DISTRIBUTION
thereby	dividing leukemic	chemothera	causing	administration.	: - Quickly
disrupting	cells, including	peutic	neutropenia,	DURATION OF	distributed to
DNA	those in the lymph	agents to	thrombocyto	ACTION: -	tissues,
replication	nodes. It's	induce	penia and	Cytotoxic effects	particularly in
and	cytotoxic effects	remission.	anaemia.	can last several	highly vascular
transcription	lead to the	ALL part of	Cardiotoxicit	days due to the	organ. Poor
. It also	destruction of	combination	y, alopecia	drug's long half-	penetration of the
inhibits the	these malignant	chemothera	Gastrointesti	life and ongoing	blood – brain
enzyme	cells, reducing the	ру	nal: - Nausea,	presence of	barrier.
topoisomera	tumour burden in	regimens.	vomiting,	metabolites.	METABOLISM:
se II,	the lymph nodes.	Other	mucositis	THERAPEUTIC	- Mainly
causing		hematologic		EFFECTS: -	metabolized in
DNA strand		malignancie		Decreases leukemic	the liver to active
breaks and		s sometimes		cell counts and	and inactive
cell death.		utilized for		improves clinical	metabolites.
Additionally		other		symptoms of	ELIMINATION:
,		leukemia		leukemia overall,	- Excreted
daunorubici		and		daunorubicin is a	primarily through
n generates		lymphomas		powerful	bile and urine.

free radicals	depending	chemotherapeutic	The half-life
that further	on the	drug used to treat	typically ranges
damage	specific	leukemia, including	from 18 to 55
cellular	treatment	those affecting	hours.
components.	protocol.	lymph nodes	

Central Nervous System: -

Mechanism Of Action	Site Of Action	Uses	Adverse Effects	Pharmacokinetics: -	Pharmcodynamics:
		AML a vital element in induction therapy. ALL hourly used in combinati on with other chemother apy agents.		ADMINISTRATIO N: - Given intravenously DISTRIBUTION: - Generally distributed in body tissues but doesn't cross the blood- brain barrier well. METABOLISM: - Basically, metabolised in the liver to both active and inactive metabolites. EXCRETION: - primarily excreted via acidity and faeces, with some renal excretion.	Action on cancer cells daunorubicin's cytotoxic effects are due to DNA intercalation and topoisomerase II inhibition, leading to programmed cell death in cancer cells. Timing of effects maximum effective against fast dividing cells, particularly during the S phase of the cell cycle, but it can affect cells in other phases too

Kidneys: -

Mechanism	Of	Uses	Adverse Effects	Pharmacodnamics	Pharmcokinetics: -
Action					

Daunorubicin in the	use of	Daunorubicin can	Cellular damage:	ABSORPTION: -
kidneys DNA	nephroprotecti	cause direct	the drug's ability to	Daunorubicin is
intercalation and	ve agents or	nephrotoxicity,	induce DNA	administered
inhibition of	antioxidants to	leading to damage	damage and	intravenously and is
topoisomerase II	reduce	of the renal	generate free	rapidly distributed
daunorubicin	oxidative	tubules and	radicals can lead to	throughout the body.
intercalates into	stress and	glomeruli.	renal cell injury.	DISTRIBUTION: -
DNA and inhibits	protect renal	Acute kidney	Induction of	The drug is
the enzyme,	cells	injury- patients	apoptosis: - the	distributed to
topoisomerase II,		receiving	oxidative stress and	various organ,
leading to the		daunorubicin may	DNA damage	including the
inhibition of DNA		develop AKI,	caused by	kidney, where it can
replication and		characterized by a	daunorubicin can	exert its effect.
transcription. While		sudden decline in	trigger apoptosis	METABOLISM: -
this action is		kidney function.	renal cells.	Daunorubicin is
systemic, it can		Chronic kidney		metabolised in the
impact rapidly		disease- long term		liver to both active
dividing cells in the		use or high doses		and inactive
kidneys,		of daunorubicin		metabolites, which
contributing to		can contribute to		can also be
nephrotoxicity.		the development		nephrotoxic.
Generation of free		of CKD.		EXCRETION: -
radicals:		Proteinuria: - the		Daunorubicin and its
daunorubicin		presence of		metabolites are
generates free		protein in the		excreted via the bile
radicals that can		urine is a sign of		and urine, with
cause oxidative		kidney damage		significant renal
damage to kidney		caused by		excretion
cells, leading to		daunorubicin.		contributing to
cellular injury and				potential
apoptosis.				nephrotoxicity.

Lungs: -

5				
Mechanism	Site Of	Adverse Effects	Pharmcokinetics	Pharmcodynamics
Of Action	Action			
Daunorubicin	While	Pulmonary	ADMINISTRATION	Effect on cancer cells
works	daunorubici	poison	: - Daunorubicin is	daunorubicin's capacity
primarily	n is used to	daunorubicin	naturally	to work into DNA and
through	treat	can create	administered	inhibit topoisomerase II
intercalation	leukemia,	pulmonary	intravenously,	leads to apoptosis in
into DNA,	which	poison, though	assuring fast	fast dividing cells,
which	primarily	it's less	clearness in the	including leukemic
disrupts the	affects the	common	bloodstream.	cells. Systemic effects:
function of	bone	compared to	DISTRIBUTION: - It	- the systemic
topoisomeras	marrow and	cardiotoxicity.	has a wide	administration of
e II enzyme.	blood, its	Symptoms may	distribution in the	daunorubicin means it
This	effects can	include	body, including	affects multiple organ
disruption	be systemic,	coughing,	penetration into the	systems, with the lungs
prevents the	impacting	conciseness of	lungs. It binds largely	potentially knowing
displacement	varied	breath and in	to plasma proteins.	adverse effects due to
of DNA	organs,	severe cases,	METABOLISM: -	its distribution and
strands and	including	interstitial	primarily metabolized	capability for causing

thereby	the lungs.	pneumonitis or	in the liver to	oxidative stress and
inhibits DNA	The lungs	pulmonary	daunorubicinol, an	tissue damage.
replication	aren't the	fibrosis.	active metabolite.	
and RNA	primary site	Infection due to	EXCRETION: -	
synthesis,	if action but	myelosuppressio	Banned through	
leading to cell	can be	n (diminished	acidity and urine the	
death.	affected by	bone marrow	elimination half-life	
Daunorubicin	the	conditioning)	is about 18.5 hours	
also generates	medicament	cases are at	for daunorubicin and	
free	's systemic	evolved danger	26.7 hours for	
revolutionists	distribution.	for infections,	daunorubicinol.	
that damage		including		
cellular		respiratory		
components,		infections.		
including				
DNA,				
proteins and				
lipids.				

Skin: -

				[
Mechanism	Site Of	Adverse	Pharmacokinetics	Pharmacodynamics
Of Action	Action	Effects		
Daunorubici	for leukemia,	Myelosuppressi	ADMINISTRATI	Onset of action: -the
n is an	the primary	on a significant	ON: - Given	cytotoxic effects on
anthracycline	site of action	reduction in	intravenously,	leukemic cells are
antibiotic	for	bone marrow	assuring complete	immediate, but
that works	daunorubicin	exertion,	bioavailability'	clinical reactions
primarily by	is the bone	leading to	DISTRIBUTION:	may take days to
intercalating	spirit, where	decreased of	-Largely	weeks.
DNA	it targets	blood cells.	distributed	Duration of action: -
strands,	leukemic	Cardiotoxicity	throughout the	effects persist as
thereby	cells. Truly	can bring	body, with high	long as the
inhibiting	so, when	damage to the	uptake in the liver,	medication remains
DNA	considering	heart muscles,	spleen, and heart.	in the system and for
strands,	cutaneous	leading to	METABOLISM: -	a period after due to
thereby	externalizatio	cardiomyopathy	primarily	the medicament's
inhibiting	n of	and congestive	metabolized in the	intercourse with
DNA	leukemia	heart failure,	liver to an active	cellular DNA.
emulsion and	(leukemia	especially with	metabolite,	medicament
function, it	cutis),	accumulative	daunorubicinol	response relationship
also inhibits	daunorubicin	medicaments.	EXCRETION: -	edge and venom are
the enzyme	can affect the	Gastrointestinal	Excreted through	pharmaceutical –
topoisomeras	skin dead by	venom includes	the acidity and	dependent, with
e II, helping	reducing the	nausea, barfing,	urine. The half-	helped medication
the	leukemic cell	mucositis and	life of	effects and the
relaxation of	burden in the	diarrhoea		

supercoiled	bloodstream	Alopecia hair	daunorubicin is	hazard of adverse
DNA, which	and bone	loss is a	about 18.5 hours.	effects
is essential	marrow,	common side		
for DNA	potentially	effect		
replication	leading to a	Extravasation		
and	decline in	can bring severe		
transcription.	leukemic	tissue damage if		
These	skin	the medicament		
bearing lead	infiltration.	leaks out of the		
to cell death,		mode during		
particularly		administration		
in fast		Skin takes		
dividing		although rare,		
cancer cells.		daunorubicin		
		can bring		
		domestic		
		answers so as		
		erythema, rash		
		and		
		hyperpigmentati		
		on.		
C = = 4 = = 1 = = 4 = = 4 = = =				

Gastrointestinal (GI): -

Mechanism	Site Of	Adverse	Uses	Pharmacokinetics	Pharmacodyanmics
Of Action	Action	Effects			e e e e e e e e e e e e e e e e e e e
Daunorubici	The site of	Nausea	AML and	ADMINISTRATI	the
n works	action for	and	ALL it's	ON: -	pharmacodynamics of
primarily by	daunorubi	spewing	now used in	Daunorubicin is	daunorubicin involve
intercalating	cin is	diarrhoea	combination	commonly	its band to DNA and
DNA	within the	mucositis	with other	administered	inhibition of
strands and	cell	(inflamma	chemotherap	intravenously	topoisomerase II,
inhibiting	nucleus,	tion of the	eutic agents,	DISTRIBUTION:	which are critical for
the enzyme	where it	mucous	particularly	- it has a large	DNA replication and
topoisomera	intercalate	membrane	in cases of	volume of	condition. The
se II this	s into)	relapse or	distribution,	medicament's
action	DNA and	Anorexia	refractory	indicating deep	effectiveness is
prevents	inhibits	(loss of	disorder	tissue belt. It	largely medication
DNA	topoisome	appetite)		penetrates well	dependent, with
replication	rase II, yet			into varied tissues,	improved medications
and	breaking			including the	building up the
transcription	the DNA			kidney, liver and	probability of both
, leading to	structure			spleen.	healing effects and
apoptosis of	and			METABOLISM: -	venom.
quickly	function			daunorubicin is	
dividing	in			metabolized	
cells, like as	gastrointe			primarily in the	
cancer cells.	stinal.			liver by reduction	
				and oxidative to	

		active and inactive	
		metabolites.	
		EXCRETION: -	
		the medicament	
		and its metabolites	
		are excreted	
		through both the	
		biliary system	
		(faces) and the	
		kidneys (urine)	

Reproductive System: -

In Females: -

Mechanism	Site Of	Uses	Adverse	Pharmcokinet	Pharmacodynamics
Of Action	Action	0.505	Effects	ics	
daunorubici	female	targeting	Ovarian	ABSORPTIO	MECHANISM OF
n is an	reproducti	leukemia	dysfunction: -	N: -	ACTION: - DNA
anthracyclin	ve system	infiltration	Daunorubicin	Daunorubicin	intercalation:
e antibiotic	daunorubi	: - in cases	can cause	is typically	Daunorubicin inserts
commonly	cin's	where	damage to the	administered	itself between DNA
used in	primary	leukemia	ovaries,	intravenously	base pairs, disrupting
chemothera	target is	has	leading to	DISTRIBUTI	the double helix
py for	the rapidly	infiltrated	menstrual	ON: - it has a	structure and
treating	dividing	the	irregularities,	wide	inhibiting the
various	cancer	reproducti	amenorrhea	distribution in	replication and
types of	cells.	ve organs	(absence of	body tissues,	transcription
cancer,	However,	daunorubi	menstruation)	including the	processes.
including	it can also	cin,	and premature	bone marrow,	Topoisomerase II
leukemia.	affect	through its	ovarian failure.	liver and	inhibition:
It's primary	healthy	systemic	Infertility: -	spleen. It can	Daunorubicin inhibits
mode of	rapidly	action, can	Due to its	also cross the	topoisomerase II, an
action,	dividing	help	cytotoxic	placenta.	enzyme crucial for
involves	cells,	eliminate	effects on	METABOLIS	DNA replication and
intercalation	including	leukemic	ovarian tissue,	M: -	repair, leading to
into DNA,	those in	cells	daunorubicin	Daunorubicin	double-strand breaks
which	the female	within	can result in	is metabolized	in the DNA.
inhibits the	reproducti	these	temporary or	primarily in the	Generation of free
synthesis of	ve system.	tissues.	permanent	liver to active	radicals: it includes
nucleic		Since	infertility.	and inactive	the formation of free
acids and		leukaemia	Teratogenicity:	metabolites.	radicals, causing
prevents cell		is a	daunorubicin is	EXCRETION:	oxidative damage to
division.		systemic	teratogenic,	- the drug and	cellular components,
		disease	meaning it can	it's metabolites	including DNA,
		drugs like	cause	are excreted	proteins and lipids.
		daunorubi	congenital	mainly via bile	
		cin are	abnormalities	and faeces,	
		effective	if administered	with a smaller	
		in	during	proportion	
		targeting	pregnancy.	eliminated	
		cancer	Secondary	through the	
		cells	malignancies:	urine.	
		throughout	there is a risk		
		the body	of developing		

including	secondary	
the	cancers,	
reproducti	including those	
ve organs	of the	
_	reproductive	
	organs, due to	
	the mutagenic	
	properties of	
	daunorubicin.	

In Males: -

laits					
Mechanism	Site Of	Uses	Adverse	Pharmacokinetics	Pharmacodynamics
Of Action	Action		Effects		
Daunorubic	Daunorubi	daunorubi	nausea and	ABSORPTION: -	Onset of action:
in is an	cin targets	cin is used	vomiting,	Daunorubicin is	Daunorubicin acts
anthracycli	rapidly	in	hair loss,	typically	rapidly on dividing
ne	dividing	treatment	mucositis	administered	cells, with effects on
antibiotic	cells,	of AML	(inflammat	intravenously,	cell proliferation
used	including	and ALL	ion of the	ensuring complete	noticeable shortly
primarily in	cancer	leukemia.	mucous	bioavailability.	after administration.
cancer	cells. It		membrane	DISTRIBUTION: -	DURATION OF
chemothera	does not		s)	it is widely	ACTION: - the
py. It works	specificall		Effects on	distributed	cytotoxic effects on
by	y target		male	throughout the	cancer cells are
intercalatin	the male		reproducti	body, with high	prolonged due to its
g DNA,	reproducti		ve system:	concentration in the	interference with
thereby	ve system		- testicular	liver, kidneys, and	DNA synthesis and
inhibiting	but can		toxicity,	heart.	cell division.
the	affect		potentially	METABOLISM: -	HALF-LIFE: - the
synthesis of	rapidly		leading to	Daunorubicin is	plasma half-life of
DNA and	dividing		reduced	metabolised	daunorubicin varies,
RNA. This	cells in ant		fertility or	primarily in the	with an initial half-
leads to the	tissue,		infertility.	liver to	life of about 45
inhibition	including		Reduce	daunorubicinol, an	minutes and a
of	those in		sperm	active metabolite.	terminal half -life of
topoisomer	the male		count and	EXCRETION: - it	approximately 18.5
ase II, an	reproducti		motility.	is excreted mainly	hours, reflecting its
enzyme	ve organs.		Gonadal	via the bile and	extensive tissue
involved in			toxicity,	faeces, with a	distribution and
DNA			which can	smaller amount	prolonged presence
replication,			result in	excreted in the	in the body
which			hormone	urine.	
results in			imbalances		
DNA strand					
breakage					
and					
apoptosis of					
cancer					
cells.					

Table: - 6 Difference Between Daunorubicin and Doxorubicin: -					
Daunorubicin	Doxorubicin				
Chemical structure: - C ₂₂ H ₂₉ NO ₁₀	Chemical structure: - C ₂₇ H ₂₉ NO ₁₁				
Structure contains a daunomycinone	Structure also to daunorubicin, but with an				
chromophore and an amino sugar daunosamine.	added hydroxyl group at the carbon 14 position.				
Mechanism of action: -intercalates into DNA,	Mechanism of action: - So to daunorubicin,				
busting the DNA double helix. Inhibits	intercalates into DNA and inhibits				
topoisomerase II, precluding DNA replication	topoisomerase II. Generates free crazies,				
and carbon. Generates free extremists, leading to	contributing to cytotoxicity. Slightly broader				
cell membrane and DNA damage.	process due to the added hydroxyl group, which				
	may affect its intercourse with cellular				
	fundamentals.				
Clinical uses: - primarily used in the treatment of	Clinical uses: - Generally used in a variety of				
acute myeloid leukaemia (AML). Also used in	cancers, including breast cancer, lymphoma,				
some cases of acute lymphoblastic leukemia	bladder cancer and Kaposi's sarcoma. Hourly a				
(ALL)	vital factor of combination chemotherapy				
	governances.				
Administration: -Administered intravenously.	Administration: -also administered				
capsule is naturally calculated rested on body	intravenously. capsule can be accommodated				
skin area.	rested on case-specific factors, including body				
	skin area and liver function.				
Pharmacokinetics: - Half-life like 18.5 hours.	Pharmacokinetics: -Half -life ranges from 20 to				
Metabolized in the liver to daunorubicinol,	48 hours, metabolized in the liver to				
which is less active, excreted altogether via	daunorubicinol, which retains some exercise,				
acidity and faeces.	excreted primarily in the acidity and to a minor				
	extent in urine.				
Side effects: - Myelosuppression, cardiotoxicity,	Side effects: - Myelosuppression, cardiotoxicity.				
gastrointestinal disturbances	Added hazards include severe tissue damage if				
Alopecia	extravasation occurs. Enhanced constancy of				
	inveterate cardiotoxicity due to incremental				
	capsule.				
Cardiotoxicity: - Hazard increase with enhanced	Cardiotoxicity: - especially forward hazard of				
accretive medicaments. Operation involves free	cardiotoxicity compared to daunorubicin.				
revolutionist arrangement leading to oxidative	cardiotoxicity may present as congestive heart				
damage in cardiac cells.	failure, continually unredeemable.				
Effectiveness: -Effective in moving absolution	Effectiveness: - greatly effective in a broad				
in AML cases. Hourly combined with other	range of cancers hourly used in combination				
agents like cytarabine for better children.	rules like CHOP for lymphoma or FAC for				
	breast cancer.				
Resistance: - resistance can develop through	Resistance: - resistance mechanisms so to				
increased medicinal efflux, altered medicinal	daunorubicin cross- resistance with other				
targets, or enhanced DNA form mechanisms.	anthracyclines is common.				

Table: - 6 Difference Between Daunorubicin and Doxorubicin: -

REFERENCES

 SFA Rizvi, S Tariq, M Mehdi - Int J Biotech Bioeng, 2018, Anthracyclines: Mechanism of Action, Classification, Pharmacokinetics and Future – A Mini Review, https://www.wileysopenlibrary.com/ijbb/Anth racyclines-Mechanism-of-Action Classification-Pharmacokinetics-and--Future--A-Mini-Review.pdf

2. A Di Marco, F Arcamone, F Zunino -.et..al; of action of antimicrobial and antitumor ..., 1975

Springer, daunorubicin (Daunorubicin) and Adriamycin and structural analogues: Biological activity and mechanism of action,

https://link.springer.com/content/pdf/10.1007/ 978-3-642-46304-4_8?pdf=chapter%20toc

- AC Alves, D Ribeiro, M Horta... Journal of The ..., 2017 - royalsocietypublishing.org, A biophysical approach to daunorubicin interaction with model membranes: relevance for the drug's biological activity, https://royalsocietypublishing.org/doi/abs/10. 1098/rsif.2017.0408
- 4. B Andersson, M Beran, C Peterson, B Tribukait - Cancer Research, 1982 – AACR, significance of cellular pharmacokinetics for the cytotoxic effects of daunorubicin, https://aacrjournals.org/cancerres/articleabstract/42/1/178/486056
- 5. P Thompson, HE Wheeler, SM Delaney... -Cancer chemotherapy ..., 2014 – Springe, pharmacogenomics of daunorubicin in children: a report from the children's oncology group, https://link.springer.com/article/10.1007/s002

80-014-2535-4

- R Portugal, R Lyrio, M Loureiro, K Urago, J Bard... - ... Myeloma and Leukemia, 2017 – Elsevier, daunorubicin 90 mg/m2 in acute myeloid leukemia induction: Increased toxicity in young patients, https://www.sciencedirect.com/science/article /pii/S215226501730842
- B Löwenberg, GJ Ossenkoppele et.al., England Journal of ..., 2009 - Mass Medical Soc, Higher-dose daunorubicin in older patients with acute myeloid leukemia, https://www.nejm.org/doi/abs/10.1056/NEJM oa0901409
- P Manisha International Journal of Advanced Research in ..., 2012 - go.gale.com, Leukemia: a review article, https://go.gale.com/ps/i.do?id=GALE%7CA3 57968820&sid=googleScholar&v=2.1&it=r& linkaccess=abs&issn=22776222&p=AONE& sw=w

- 9. Leukemia Disease Detection and Classification Using Machine Learning Approaches: A Review, A Ratley, J Minj, P Patre - 2020 First International Conference ..., 2020 - ieeexplore.ieee.org, https://ieeexplore.ieee.org/abstract/document/ 9071471/
- 10. RD Brunning Seminars in diagnostic pathology, 2003 - Elsevier, Classification of acute leukaemia's, https://www.sciencedirect.com/science/article /pii/S0740257003000315
- 11. T Szczepański, VHJ van der Velden... Best Practice & ..., 2003 - Elsevier, Classification systems for acute and chronic leukaemia's, https://www.sciencedirect.com/science/article /pii/S1521692603000860
- 12. LF Diehl, LH Karnell, HR Menck ... International Journal of the ..., 1999 - Wiley Online Library, The National Cancer Data Base Report on age, gender, treatment, and outcomes of patients with chronic lymphocytic leukemia,

https://acsjournals.onlinelibrary.wiley.com/do i/abs/10.1002/(SICI)1097-0142(19991215)86:12%3C2684::AID-

CNCR13%3E3.0.CO;2-V

- 13. X Lin, J Wang, X Huang, H Wang, F Li, W Ye... - Aging (Albany 2021 ncbi.nlm.nih.gov, Global, regional, and national burdens of leukemia from 1990 to 2017: a systematic analysis of the global burden of disease 2017 study, https://www.ncbi.nlm.nih.gov/pmc/articles/P MC8064161/
- 14. M Yi, L Zhou, A Li, S Luo, K Wu Aging (Albany NY), 2020 - ncbi.nlm.nih.gov, Global burden and trend of acute lymphoblastic leukemia from 1990 to 2017, https://www.ncbi.nlm.nih.gov/pmc/articles/P MC7746341/

- 15. AG Waks, EP Winer Jama, 2019 jamanetwork.com, Breast Cancer Treatment A Review ,https://jamanetwork.com/journals/jama/articl e-abstract/2721183
- 16. F Brasó-Maristany, L Paré, N Chic... -Molecular ..., 2022 - Wiley Online Library, Gene expression profiles of breast cancer metastasis according to organ site, https://febs.onlinelibrary.wiley.com/doi/abs/1 0.1002/1878-0261.13021
- 17. GN Sharma, R Dave, J Sanadya... Journal of advanced ..., 2010 - journals.lww.com, VARIOUS TYPES AND MANAGEMENT OF BREAST CANCER AN OVERVIEW, https://journals.lww.com/japtr/fulltext/2010/0 1020/various_types_and_management_of_bre ast_cancer_an.3.aspx
- 18. SH Moolgavkar, NE Day... ... of the National Cancer ..., 1980 - academic.oup.com, Two-Stage Model for Carcinogenesis: Epidemiology of Breast Cancer in Females, https://academic.oup.com/jnci/articleabstract/65/3/559/909627
- 19. S Fox, V Speirs, AM Shaaban Virchows Archiv, 2022 – Springer, Male breast cancer: an update , https://link.springer.com/article/10.1007/s004 28-021-03190-7
- 20. C Gómez-Raposo, FZ Tévar, MS Moyano... -Cancer treatment ..., 2010 – Elsevier, Male breast cancer, https://www.sciencedirect.com/science/article /pii/S030573721000022
- 21. TD Hill, HJ Khamis, JE Tyczynski Annals of epidemiology, 2005 – Elsevier, Comparison of Male and Female Breast Cancer Incidence Trends, Tumour Characteristics, and Survival, https://www.sciencedirect.com/science/article /pii/S1047279705000128
- 22. CE DeSantis, J Ma, MM Gaudet... CA: a cancer journal ..., 2019 Wiley Online

Library, Breast cancer 20 T Morimoto, K Komaki, T Yamakawa... - Journal of surgical ..., 1990 - Wiley Online Library, Cancer of the male breast statistics, 2019, https://acsjournals.onlinelibrary.wiley.com/do i/abs/10.3322/caac.21583

- 23. S Lei, R Zheng, S Zhang, S Wang... Cancer ..., 2021 - Wiley Online Library, Global patterns of breast cancer incidence and mortality: A population-based cancer registry data analysis from 2000 to 2020, https://onlinelibrary.wiley.com/doi/abs/10.10 02/cac2.12207
- 24. Sarcoma, KM Skubitz, DR D'Adamo Mayo Clinic Proceedings, 2007 – Elsevier, https://www.sciencedirect.com/science/article /pii/S0025619611614213
- 25. SARCOMAS IN ORGAN ALLOGRAFT RECIPIENTS1,2, I Penn - Transplantation, 1995 - journals.lww.com, https://journals.lww.com/transplantjournal/ab stract/1995/60120/sarcomas_in_organ_allogra ft_recipients1,2.20.aspx
- 26. EPIDEMIOLOGY, PATHOLOGY, TYPES AND DIAGNOSIS OF SOFT TISSUE SARCOMA: A RESEARCH REVIEW, R Banerjee, D Bandopadhyay, VG Abilash -Asian J Pharm Clin Res, 2013 – Citeseer, https://citeseerx.ist.psu.edu/document?repid=r ep1&type=pdf&doi=2ab3832b11176167299a 2e6e94387e17674b6c
- 27. The epigenomics of sarcoma, BA Nacev, KB Jones, AM Intlekofer, JSE Yu... Nature Reviews ..., 2020 nature.com, https://www.nature.com/articles/s41568-020-0288-4
- Statistics of soft-tissue sarcoma in Japan: Report from the Bone and Soft Tissue Tumor Registry in Japan, K Ogura, T Higashi, A Kawai Journal of Orthopaedic Science – 2017 sciencedirect.com,

https://www.sciencedirect.com/science/article/pii/S094926581730088

- 29. Lymphoma, EN Mugnaini, N Ghosh Primary Care: Clinics in Office ..., 2016 primarycare.theclinics.com, https://www.primarycare.theclinics.com/articl e/S0095-4543(16)30052-5/abstract
- 30. Hodgkin's lymphoma, L Yung, D Linch The lancet, 2003 - thelancet.com, https://www.thelancet.com/journals/lancet/arti cle/PIIS0140-6736(03)12777-8/abstract
- 31. Non- Hodgkin lymphoma, JO Armitage, RD Gascoyne, MA Lunning, F Cavalli The lancet, 2017 thelancet.com, https://www.thelancet.com/article/S0140-6736(16)32407-2/abstract
- 32. Non-Hodgkin Lymphoma: Diagnosis and Treatment, SM Ansell, J Armitage - Mayo Clinic Proceedings, 2005 – Elsevier, https://www.sciencedirect.com/science/article /pii/S002561961161594
- 33. The epidemiological patterns of non-Hodgkin lymphoma: global estimates of disease burden, risk factors, and temporal trends, Y Chu, Y Liu, X Fang, Y Jiang, M Ding, X Ge... - Frontiers in ..., 2023 - frontiersin.org, https://www.frontiersin.org/articles/10.3389/f onc.2023.1059914/full
- 34. Age, gender, and racial differences in incidence and survival in primary CNS lymphoma, JL Villano, M Koshy, H Shaikh, TA Dolecek... - ... journal of cancer, 2011 nature.com,

https://www.nature.com/articles/bjc2011357

- 35. Bone marrow, FR Sabin Physiological Reviews, 1928 - journals.physiology.org, https://journals.physiology.org/doi/pdf/10.115 2/physrev.1928.8.2.191
- Bone marrow and bone: a functional unit, JE Compston - Journal of Endocrinology, 2002 joe.bioscientifica.com,

https://joe.bioscientifica.com/view/journals/jo e/173/3/387.xml

- 37. The dynamics of ammonia metabolism in man. Effects of liver disease and hyperammonaemia, AH Lockwood, JM McDonald... - The Journal of ..., 1979 - Am Soc Clin Investig, https://www.jci.org/articles/view/109322
- 38. Cytarabine and daunorubicin for the treatment of acute myeloid leukemia, T Murphy, KWL Yee - Expert opinion on pharmacotherapy, 2017 - Taylor & Francis, https://www.tandfonline.com/doi/abs/10.1080 /14656566.2017.1391216
- 39. Spontaneous splenic rupture during induction chemotherapy for acute myeloid leukemia, AM Zeidan, M Mitchell, R Khatri, D Itani... -Leukemia & ..., 2014 - Taylor & Francis, https://www.tandfonline.com/doi/full/10.3109 /10428194.2013.796060
- 40. Pharmacokinetics, drug metabolism, and tissue distribution of CPX-351 in animals Q Wang, P Tardi, N Sadowski, S Xie, D Heller...
 ..., Biology and Medicine, 2020 Elsevier, https://www.sciencedirect.com/science/article /pii/S1549963420301295
- 41. The effects of postinduction intensification treatment with cytarabine and daunorubicin in adult acute lymphocytic leukemia: а prospective randomized clinical trial by Cancer and Leukemia Group B, RR Ellison, R Mick, J Cuttner, CA Schiffer... - Journal of Clinical 1991 ascopubs.org, https://ascopubs.org/doi/abs/10.1200/jco.1991 .9.11.2002
- 42. Dose intensification of daunorubicin and cytarabine during treatment of adult acute lymphoblastic leukemia, W Stock, JL Johnson, RM Stone, JE Kolitz, BL Powell... - Cancer, 2013 - Wiley Online Library, https://acsjournals.onlinelibrary.wiley.com/do i/abs/10.1002/cncr.27617

43. The role of systemic high-dose cytarabine in the treatment of central nervous system leukemia clinical results in 46 patients, E Morra, M Lazzarino, E Brusamolino, G Pagnucco... - Cancer, 1993 - Wiley Online Library,https://acsjournals.onlinelibrary.wiley .com/doi/abs/10.1002/1097-0142(19930715)72:2%3C439::AID-

CNCR2820720220%3E3.0.CO;2-4

- 44. Cytarabine and neurologic toxicity WJ Baker, GL Royer Jr, RB Weiss - Journal of Clinical Oncology, 1991 - ascopubs.org, https:/ ascopubs.org/doi/abs/10.1200/JCO.1991.9.4.6 79
- 45. AJ Perissinotti, BL Marini 2016 books.google.com, [BOOK] Cancer pharmacology and pharmacotherapy review: study Guide for Oncology Boards and MOC Exams,

https://books.google.com/books?hl=en&lr=&i d=4b6mCwAAQBAJ&oi=fnd&pg=PP1&dq= moa,uses,adverse+effects+phamcokinetics+an d+pharmacodynamics+of+kideney+using+da unorubicin+for+treatment+of+leukemia+and +other+cancers&ots=LJiu2FtN5Z&sig=u0kcf BytAgwGqE7aHugaL6sbte

- 46. American Heart Association Clinical Pharmacology ... - Circulation, 2022 - Am Heart Assoc, Cardio-Oncology Drug Interactions: A Scientific Statement From the American Heart Association, https://www.ahajournals.org/doi/abs/10.1161/ CIR.000000000001056
- 47. AJ Perissinotti, BL Marini 2016 books.google.com, [BOOK] Cancer pharmacology and pharmacotherapy review: study Guide for Oncology Boards and MOC Exams,https://books.google.com/books?hl=en &lr=&id=4b6mCwAAQBAJ&oi=fnd&pg=P P1&dq=moa,uses,adverse+effects+phamcoki netics+and+pharmacodynamics+of+liver+usi ng+daunorubicin+for+treatment+of+leukemia

+and+other+cancers&ots=LJiu2FtQ51&sig=v iAVcZxizgagTG05g948xFCtV_Y

- 48. JI Lai, YJ Tseng, MH Chen, CYF Huang... -Frontiers in ..., 2020 - frontiersin.org, https://www.frontiersin.org/articles/10.3389/f onc.2020.561936/full, Clinical Perspective of FDA Approved Drugs With P-Glycoprotein Inhibition Activities for Potential Cancer Therapeutic
- 49. A Agrawal, N Bhargava Indian Journal of Child Health, 2024 - mansapublishers.com, Pharmacotherapy of Acute Lymphoblastic Leukemia in Pediatric Patients: A Review of Efficacy and Adverse Effects, https://www.mansapublishers.com/index.php/ ijch/article/view/4821
- 50. LM Fombad Southern African Journal of Anaesthesia and ..., 2023 - sajaa.co.za, Pharmacology for chemotherapy and immunosuppressants, https://sajaa.co.za/index.php/sajaa/article/vie w/3035
- 51. O Prakash, R Singh, N Singh, S Usmani... -Mini reviews in ..., 2022 ingentaconnect.com, Anticancer Potential of Naringenin, Biosynthesis, Molecular Target, and Structural Perspectives, https://www.ingentaconnect.com/content/ben/ mrmc/2022/00000022/0000005/art00007
- 52. R Zang, A Barth, H Wong, J Marik, J Shen...
 Journal of Medicinal ..., 2022 ACS Publications, Design and Measurement of Drug Tissue Concentration Asymmetry and Tissue Exposure-Effect (Tissue PK-PD) Evaluation, https://pubs.acs.org/doi/abs/10.1021/acs.jmed

chem.2c00502

53. JC Sivils - 2010 - scholarworks.utep.edu, Effects of the loss of multidrug resistance associated protein 1 on steroid homeostasis, dendritic cell function and compensatory

mechanisms

https://scholarworks.utep.edu/open_etd/2785/

- 54. K Fent, NR Brun, K Zhang, Y Zhao -Toxicology of Fishes, 2024 taylorfrancis.com, Effects of Pharmaceuticals, https://www.taylorfrancis.com/chapters/edit/1 0.1201/9781003160694-14/effectspharmaceuticals-karl-fent-nadja-brun-kunzhang-yanbin-zhao
- 55. B Standard 2015 search.proquest.com, [PDF] mountainscholar.org Mechanism-based thresholds of toxicological concern (TTC) for developmental and reproductive toxicity of anticancer compounds, https://search.proquest.com/openview/1dd41c 418a9e91e2e873dc19db4b20da/1?pqorigsite=gscholar&cbl=18750
- 56. K Fent, NR Brun, K Zhang, Y Zhao -Toxicology of Fishes, 2024 taylorfrancis.com, Effects of Pharmaceuticals, https://www.taylorfrancis.com/chapters/edit/1

0.1201/9781003160694-14/effectspharmaceuticals-karl-fent-nadja-brun-kunzhang-yanbin-zhao

- 57. J Cielecka-Piontek, A Jelińska, M Zając..... of Pharmaceutical and ..., 2009 – Elsevier, "",A comparison of the stability of doxorubicin and daunorubicin in solid state, https://www.sciencedirect.com/science/article /pii/S0731708508006560
- 58. L Gallois, M Fiallo, A Garnier-Suillerot -Biochimica et Biophysica Acta (BBA ..., 1998 – Elsevier, Comparison of the interaction of doxorubicin, daunorubicin, idarubicin and idarubicin with large unilamellar vesicles: Circular dichroism study, https://www.sciencedirect.com/science/article /pii/S0005273697002411

HOW TO CITE: CH. Bindusri*, P. Gayatri Devi, Dr. Y. A. Chowdary, Y. V. Veerendranadh, Statistical Study on Daunorubicin, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 1, 742-771. https://doi.org/10.5281/zenodo.14631411

