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Chronic infections are largely sustained by microbial biofilms, complex, multicellular 

matrices that confer antimicrobial tolerance and immune evasion. Conventional 

antibiotic regimens fail to eradicate these resilient structures due to limited penetration, 

metabolic dormancy, and efflux-mediated resistance. In recent years, phytochemicals 

have emerged as promising anti-biofilm agents through diverse mechanisms, including 

quorum-sensing inhibition, extracellular polymeric substance (EPS) disruption, and 

persister-cell eradication. Compounds such as curcumin, berberine, allicin, 

cinnamaldehyde, and catechins act at sub-inhibitory concentrations to suppress 

virulence and enhance antibiotic susceptibility. Multi-herb or polyherbal combinations 

further potentiate efficacy via synergistic interactions, simultaneously targeting quorum 

sensing, adhesion, and EPS synthesis while minimising resistance risks. Delivery 

innovations such as herbal nanoparticles, nanofibers, and mucoadhesive gels improve 

bioavailability, sustained release, and site-specific action against chronic wounds, oral, 

and urinary tract biofilms. This review synthesises current evidence on synergistic 

multi-herb strategies and highlights their mechanistic roles in disrupting biofilm 

integrity, downregulating virulence gene expression, and reactivating persister 

metabolism. Despite significant in vitro advances, translational challenges persist due 

to limited standardisation, dose optimisation, and clinical validation. Integrating 

polyherbal therapeutics with advanced delivery systems represents a novel, multi-

targeted approach for combating chronic infections, reducing antibiotic reliance, and 

supporting host immune resilience. Future research should focus on systematic synergy 

modelling, pharmacokinetic profiling, and in vivo evaluation to establish safe, effective 

phytotherapeutic interventions for biofilm-associated diseases. 
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INTRODUCTION 

Chronic infections persist due to bacterial 

biofilms, structured communities embedded in an 

extracellular matrix that shield microbes from host 

defences and treatments (1). These biofilms affect 

65-80% of human infections, like cystic fibrosis 

and implant-related issues (2). Biofilms cause 

prolonged inflammation and recurrence, 

complicating clinical management in wounds, 

catheters, and dental plaques (3). Antibiotics fail 

against biofilms due to poor matrix penetration 

and the slow growth of persister cells (4). Biofilms 

show up to 1000-fold increased tolerance 

compared to planktonic cells (5). Efflux pumps 

and altered metabolism further reduce the efficacy 

of antibiotics, leading to persistent infections 

despite high-dose regimens (6). Herbal 

phytochemicals like berberine, curcumin, 

quercetin, and baicalin inhibit quorum sensing, 

adhesion, and EPS production (7). They disrupt 

biofilms at sub-MIC levels without fostering 

resistance (8). Compounds such as 

cryptotanshinone and mangiferin target virulence 

genes in pathogens like P. aeruginosa and S. 

aureus (9). Multi-herb combinations enhance 

efficacy through synergistic mechanisms like QS 

inhibition plus anti-adhesion (10). They reduce 

biofilm biomass more than single agents and 

minimise resistance risks (11). Polyherbal 

formulations mimic traditional medicine, 

improving penetration and multitarget action (12). 

This review assesses the synergistic effects of 

phytochemicals on biofilm disruption in chronic 

infections (13). It synthesises mechanisms, 

efficacy data, and clinical translation potential to 

guide novel herbal therapies (14). 

1.1 Mechanisms of Biofilm Formation 

Biofilm formation follows a structured lifecycle 

(15). Initial attachment of planktonic bacteria to a 

surface occurs first (16). This progresses to 

irreversible adhesion and microcolony formation 

(17). Maturation involves proliferation and EPS 

production, creating a three-dimensional matrix 

(18). The cycle concludes with dispersal, where 

cells revert to planktonic form due to nutrient 

depletion or signalling (19). Quorum sensing (QS) 

enables bacterial communication via autoinducer 

molecules like N-acyl-homoserine lactones (20). 

QS regulates gene expression based on population 

density (21). QS triggers EPS production, 

virulence factors, and biofilm maturation through 

coordinated collective behaviour (22). It plays a 

vital role in biofilm architecture and antibiotic 

tolerance (23). EPS provides structural integrity, 

adhesion, and protection against antibiotics and 

host defences. During maturation, EPS production 

increases to create water channels for nutrient flow 

and waste removal. Persister cells are dormant, 

antibiotic-tolerant subpopulations within biofilms. 

They form in higher numbers during biofilm 

culture than during planktonic growth. Persister 

cells contribute to recurrence post-treatment. 

Biofilms cause 65-80% of chronic infections, 

including cystic fibrosis and implant-associated 

osteomyelitis (24). 

2. ANTI-BIOFILM MECHANISMS OF 

HERBS 

2.1 QS Inhibition 

Herbal compounds like berberine, curcumin, and 

garlic-derived ajoene block quorum sensing by 

antagonising autoinducer receptors such as LasR 

in P. aeruginosa and Agr in S. aureus (25). This 

disrupts coordinated behaviours essential for 

biofilm initiation and maturation without killing 

planktonic cells (26). QS inhibitors from herbs 

like Rosa rugosa tea polyphenols reduce violacein 

production in Chromobacterium violaceum 

reporter strains by over 70% (27). 

2.2 EPS Disruption 
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Phytochemicals such as tannins from Punica 

granatum and flavonoids from green tea 

destabilise the EPS matrix by binding 

polysaccharides and eDNA (28). They reduce 

biofilm biomass by 50-80% in S. aureus and 

Candida models(29).  

Cranberry proanthocyanidins inhibit EPS 

synthesis enzymes, creating structural voids that 

enhance antibiotic penetration (30). Enzyme-

mimicking polyphenols from Herba patriniae 

degrade mature EPS scaffolds (31).  

2.3 Persister Cell Eradication 

Carvacrol from oregano and thymol penetrate 

dormant persister cells, disrupting membrane 

potential and ATP synthesis (32). They achieve 4-

5 log reductions in E. coli and P. aeruginosa 

persisters(33). Alkaloids like sanguinarine from 

Sanguinaria canadensis target toxin-antitoxin 

modules, reactivating metabolic pathways in 

persisters (34). Combined herbal extracts show 

synergy with antibiotics, eradicating 99% of 

persisters that survive ampicillin alone (35). 

2.4 Gene Expression Modulation 

Quercetin and resveratrol downregulate biofilm-

associated genes (pel, algD, ica) by 60-90% 

through histone deacetylase inhibition and sRNA 

interference (36). Polygonum chinense extracts 

suppress the ica operon in S. aureus, reducing PIA 

production essential for adhesion (37). 

Epigallocatechin gallate modulates global 

regulators like RpoS, shifting bacteria toward 

planktonic growth (38). 

2.5 Fermentation-Enhanced Bioactive 

Compounds 

Fermented herbal products like kimchi-derived 

phenolics and Ginkgo biloba extracts increase 

anti-biofilm potency 2-5 fold via microbial 

biotransformation (39). Lactic acid fermentation 

of garlic enhances allicin derivatives that inhibit 

QS 3x more effectively than fresh extracts (40). 

Traditional fermented medicines like 

Tripterygium wilfordii show 80% biofilm 

reduction in MRSA due to novel isoflavone 

metabolites (41). 

3. SYNERGISTIC MULTI-HERB 

APPROACHES 

3.1 Definition and Concept of Herbal Synergy 

Herbal synergy refers to the combined action of 

multiple plant extracts or phytochemicals that 

produce therapeutic effects greater than those of 

individual herbs alone. This synergism may occur 

through complementary mechanisms such as 

enhanced bioavailability, multi-target interactions, 

or improved antimicrobial potency (42). In the 

context of biofilms, synergy helps target the 

structurally and functionally diverse layers of 

microbial communities more effectively than 

single-herb formulations (43). 

3.2 Examples of Herb Combinations Targeting 

Biofilms 

Several multi-herb combinations have shown 

enhanced antibiofilm effects, such as curcumin + 

piperine, where piperine increases curcumin’s 

penetration and activity against EPS-producing 

bacteria (43). Garlic (allicin) + gingerol-rich 

extracts demonstrate synergistic inhibition of 

quorum sensing and bacterial adhesion (44). 

Combinations like berberine + tea polyphenols 

also display enhanced biofilm disruption and 

suppression of virulence pathways (45). These 

synergistic pairs highlight the potential of multi-

herb formulations in overcoming biofilm-related 

chronic infections. 
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3.3 Mechanistic Classification: Layer-Wise 

Biofilm Disruption 

Multi-herb synergy can be classified based on the 

specific biofilm layer or component each herb 

targets: 

• EPS Matrix Disruption: phytochemicals 

such as eugenol and cinnamaldehyde weaken 

the structural integrity of the EPS layer (48). 

• Quorum Sensing Inhibition: compounds 

like curcumin and catechins block signalling 

pathways, reducing virulence and biofilm 

maturation (49). 

• Persister Cell Targeting: alkaloids such as 

berberine and reserpine exhibit activity 

against dormant persister cells within biofilms 

(50). 

• Immune Modulation: herbs like turmeric, 

neem, and ashwagandha enhance host 

immune responses, supporting clearance of 

chronic infections (51). 

Together, these mechanisms demonstrate how 

multi-herb formulations can comprehensively 

weaken, disrupt, and eliminate biofilms. 

3.4 Advantages Over Single-Herb Therapy 

Multi-herb formulations provide several benefits 

over single-herb approaches, including broader 

antimicrobial activity, reduced resistance 

development, and enhanced effects at lower doses 

(52). Synergistic herb combinations allow 

simultaneous targeting of multiple biofilm 

pathways: EPS degradation, quorum-sensing 

suppression, cell membrane disruption, and 

immune enhancement, leading to more efficient 

biofilm eradication (53). Multi-herb strategies also 

lower toxicity and improve therapeutic safety 

compared to high-dose monotherapies (54). 

4. DELIVERY SYSTEMS FOR ENHANCED 

EFFICACY 

4.1 Nanofiber-Based Herbal Delivery 

Nanofiber matrices provide a high surface area and 

controlled release environment for herbal 

bioactives, enabling sustained delivery at infection 

sites. Electrospun nanofibers loaded with 

phytochemicals such as curcumin, neem extract, or 

essential oils show improved penetration into 

biofilm layers and enhanced antimicrobial activity 

compared to free extracts (51,52). Their porous 

structure allows deeper diffusion into biofilms, 

making them highly effective for chronic wound 

infections. 

 4.2 Mucoadhesive Gels 

Herbal mucoadhesive gels prolong the retention 

time of phytochemicals on mucosal surfaces such 

as the oral cavity, nasal mucosa, or vaginal 

membranes. This extended contact enhances the 

antibiofilm action of herbs like aloe vera, 

liquorice, curcumin, and neem, allowing 

continuous release at the infection site (53). 

Mucoadhesive polymers such as Carbopol, 

xanthan gum, and chitosan further enhance 

penetration through biofilm EPS while improving 

patient compliance (54). 

4.3 Herbal Nanoparticles 

Nanoparticle-based herbal formulations—such as 

curcumin nanoparticles, berberine-loaded chitosan 

nanoparticles, and silver–herbal hybrid 

nanoparticles—significantly increase 

bioavailability and cell uptake of phytochemicals 

(55). Due to their nanoscale size, these particles 

can penetrate dense biofilm matrices and disrupt 

microbial adhesion, quorum sensing, and 

metabolic pathways more efficiently than 

conventional extracts (56). Nanoencapsulation 
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also protects unstable herbal compounds from 

degradation. 

4.4 Role in Targeted Biofilm Disruption 

Advanced delivery systems enhance targeted 

action against specific biofilm components. 

Nanoparticles and nanofibers can be engineered to 

preferentially bind bacterial surfaces, degrade 

EPS, or release phytochemicals in response to 

infection-specific conditions such as pH or 

enzymes (56). These targeted systems provide 

multi-layer disruption, EPS breakdown, inhibition 

of quorum sensing, and eradication of persister 

cells, making them highly effective for chronic 

infections (57). Mucoadhesive platforms further 

localise these effects at mucosal biofilm sites. 

5. KEY HERBS WITH MULTI-TARGET 

ANTI-BIOFILM ACTIVITY 

1. Curcumin 

Curcumin inhibits quorum sensing, suppresses 

EPS matrix synthesis, and increases membrane 

permeability in Pseudomonas aeruginosa and 

Staphylococcus aureus (58,59). 

Demonstrates synergistic disruption when 

combined with antibiotics and other herbs. 

(60). 

2. Berberine 

Berberine interferes with microbial signalling 

pathways (LuxS, LasR), reducing biofilm 

thickness and metabolic activity(61). 

Shows strong synergy with flavonoids, curcumin, 

and antibiotics, improving penetration into mature 

biofilms(62). 

3. Allicin (Garlic-derived) 

Allicin penetrates microbial cell walls, disrupts 

thiol-containing enzymes, and inhibits EPS 

formation(63). 

Effective against multi-drug-resistant (MDR) 

staphylococcal and fungal biofilms(64). 

4. Cinnamaldehyde 

Damages biofilm architecture by breaking 

hydrogen-bond networks and downregulating 

adhesion genes (fimA, curli)(65). 

Inhibits quorum–sensing–regulated virulence 

factors in gram-negative pathogens(70). 

5. Tea Polyphenols (EGCG & Catechins) 

EGCG reduces cell adhesion, inhibits amyloid-like 

fibrils in the biofilm matrix, and potentiates 

antibiotic uptake(71). 

Prevents initial colonisation and reduces multidrug 

efflux pump activity in biofilm-forming 

bacteria(72). 

6. Liquorice Flavonoids (Glycyrrhizin, 

Licochalcone A) 

Licochalcone A targets metabolic pathways 

involved in EPS synthesis and biofilm 

maturation(73). 

Glycyrrhizin destabilises membrane integrity and 

downregulates persister-cell formation. 

(74). 

Other Emerging Phytochemicals 

1. Boswellic acids 

Reduce oxidative stress and inhibit EPS synthesis 

in chronic inflammatory biofilms(75). 
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2. Thymol and Carvacrol (from thyme & 

oregano) 

Causes rapid membrane depolarisation and 

collapse of metabolic activity inside mature 

biofilms(76). 

3. Baicalin (Scutellaria baicalensis) 

Acts as a quorum-quenching agent and enhances 

antibiotic sensitivity(77). 

6. RESEARCH GAPS AND FUTURE 

DIRECTIONS 

Lack of Standardised Anti-Biofilm Assays 

Current studies rely on variable in vitro methods 

(microtiter plates, crystal violet, CLSM), limiting 

comparability across laboratories(78). 

No universal guidelines exist for evaluating herbal 

anti-biofilm activity, leading to inconsistent 

reporting of MIC, MBIC, and MBEC values(79). 

Need for In Vivo and Clinical Studies 

Most evidence for herbal anti-biofilm effects 

comes from in vitro models; animal models and 

human trials remain limited(80). 

Complex host–immune interactions in chronic 

infections cannot be captured in laboratory biofilm 

models alone(81). 

Optimisation of Synergistic Multi-Herb 

Combinations 

Few studies systematically evaluate dose response, 

ratio optimisation, or pharmacokinetic 

compatibility of combined herbs. 

Synergy is often reported without mechanistic 

integration (quorum sensing + EPS inhibition + 

membrane disruption)(82). 

Integration with Conventional Therapy 

Combining phytochemicals with antibiotics shows 

promise, but standardised combinational protocols 

and safety profiles are underdeveloped(84). 

Herb drug interactions, especially CYP-mediated 

ones, require detailed investigation before clinical 

translation. 

Potential Translational Applications 

Advanced delivery systems (nanogels, 

mucoadhesive systems, nanoparticles) require 

regulatory evaluation for herbal formulations. 

Multi-targeted herbal therapeutics could be 

integrated into personalised medicine approaches 

for chronic infections(83). 

Table 1. Documented Multi-Herb Combinations Showing Synergistic Anti-Biofilm Effects 

Herb Combination Synergistic 

Mechanism 

Biofilm Type 

Targeted 

Study Outcome Reference 

Curcumin + 

Berberine 

QS inhibition + 

membrane damage 

P. aeruginosa 2–3× higher biofilm 

reduction vs. single herbs 

(84) 

Garlic + Ginger EPS degradation + 

virulence inhibition 

Mixed oral 

biofilms 

Significant reduction in 

adhesion 

(85) 

Green tea polyphenols 

+ Liquorice 

Adhesion inhibition + 

anti-inflammatory 

Dental plaque Enhanced inhibition of 

biofilm biomass 

(86) 

Cinnamaldehyde + 

Eugenol 

QS disruption + 

membrane permeability 

S. mutans Reduction in EPS and 

acidogenicity 

(87) 
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Turmeric + Neem Anti-inflammatory + 

antimicrobial synergy 

Wound 

biofilms 

Faster wound healing and 

biofilm control 

(88) 

Table 2. Herbal Delivery Systems and Their Effectiveness Against Biofilms 

Delivery System Herbal Extract/ 

Compound 

Target Site Improvement in Efficacy Reference 

Nanofiber patch Curcumin Chronic wound 

biofilms 

Sustained release, deeper 

penetration 

(89) 

Mucoadhesive gel Licorice extract Oral biofilms Improved retention, reduced 

inflammation 

(90) 

Herbal 

nanoparticles 

Berberine NPs Multi-species 

biofilms 

Enhanced 2× penetration into 

EPS 

(91) 

Nanoemulsion Cinnamaldehyde Dental plaque Increased stability & QS 

inhibition 

(92) 

Hydrogel Green tea catechins UTI biofilms Controlled delivery, reduced 

recurrence 

(93) 

7. CONCLUSION 

Multi-herb formulations offer a promising 

approach for overcoming biofilm-associated 

chronic infections by simultaneously targeting 

multiple microbial pathways. 

Evidence indicates that combining herbs enhances 

antibiofilm efficacy through synergistic effects, 

enabling EPS degradation, quorum-sensing 

inhibition, reduced bacterial adhesion, and 

enhanced immune modulation. 

Multi-herb synergy provides multi-layered biofilm 

disruption, including targeting persister cells, 

inhibiting virulence gene expression, and 

destabilising microbial membrane integrity. 

Herbal combinations also promote host tissue 

repair, anti-inflammatory responses, and 

modulation of oxidative stress mechanisms not 

achieved by conventional antibiotics alone. 

Integrating multi-herb strategies with advanced 

delivery systems (nanogels, nanoparticles, 

mucoadhesive gels) may significantly improve 

therapeutic outcomes in chronic wounds, oral 

infections, UTIs, and respiratory biofilm 

infections. 

These approaches can reduce antibiotic 

dependence, lower antimicrobial resistance, and 

serve as safer, multi-target alternatives for long-

term management of persistent infection. 
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