

Review Article

Comprehensive Review on Anti-Inflammatory Potential of Ginger (*Zingiber officinale*)

Srinivas Thota*, Kothapalli Smili, Thangabalan B, Anusha Chinnapureddy, Syed Dasreen, Unnagiri Nandini, Morla Pavani, Shaik Akthar

SIMS College of Pharmacy, Affiliated to Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.

ARTICLE INFO

Published: 23 Jan 2026

Keywords:

Ginger *Zingiber officinale*, Bioactive compounds, Anti-inflammatory activity, Oxidative stress, Rheumatoid arthritis, Atherosclerosis, Immunomodulation, Neuroprotection, Antioxidants, Herbal therapeutics.

DOI:

10.5281/zenodo.18351724

ABSTRACT

Ginger (*Zingiber officinale Roscoe*) has long been recognized for its medicinal value, particularly in inflammatory disorders. Recent clinical and experimental evidence has strengthened its therapeutic relevance, positioning ginger and its bioactive molecules—especially gingerols, shogaols, and zingerone—as potent modulators of inflammatory and oxidative pathways. Multiple randomized controlled trials demonstrate significant improvements in inflammatory biomarkers such as CRP, TNF- α , IL-1 β , IL-2, and oxidative stress indicators following ginger supplementation in diverse patient populations, including those with Authors; , rheumatoid arthritis, obesity, and peptic ulcer disease . Meta-analyses corroborate reductions in systemic inflammation and lipid dysregulation, suggesting a broad metabolic impact . Mechanistic studies reveal that ginger constituents inhibit NF- κ B activation, suppress iNOS expression, and activate cytoprotective Nrf2-dependent antioxidant enzymes, thereby attenuating cellular oxidative injury . Additionally, ginger has demonstrated neuroprotective effects, with implications for preventing neurodegenerative diseases through modulation of inflammatory cascades and oxidative stress . Its immunomodulatory roles extend to influencing cytokine production and regulating innate and adaptive immune responses . Evidence also supports its utility as an adjunct in gastrointestinal and cancer-related conditions due to its antioxidative potential . Collectively, ginger emerges as a safe, multi-targeted natural anti-inflammatory agent with promising applications in chronic diseases characterized by inflammation and oxidative imbalance. However, further standardized clinical trials are essential to optimize dosing strategies, treatment durations, and population-specific effects.

INTRODUCTION

Ginger, a popular spice, has been traditionally used for its medicinal properties, particularly for

***Corresponding Author:** Srinivas Thota

Address: SIMS College of Pharmacy, Affiliated to Acharya Nagarjuna University, Guntur, Andhra Pradesh, India.

Email : srinuravi786@gmail.com

Relevant conflicts of interest/financial disclosures: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

its medicinal properties, particularly for its anti-inflammatory effects. These effects are primarily attributed to its bioactive compounds ,with gingerol being the most prominent. Ginger is well-known for its anti-inflammatory properties, which are backed by scientific research and its traditional use in medicine. The key properties of ginger's anti-inflammatory action is inhibition of inflammatory enzymes, antioxidant activity , cytokine regulation, modulation of immune response, reduction of inflammatory mediators, pain- relieving effects , impact on chronic inflammation, gastrointestinal protection, neuroinflammation protection , anti-cancer properties .Inflammation is a central pathological mechanism underlying metabolic, autoimmune, gastrointestinal, cardiovascular, and neurodegenerative diseases, joint pain relief. Natural compounds with multi-targeted anti-inflammatory and antioxidant mechanisms are gaining increased scientific and clinical attention. Ginger (*Zingiber officinale*), a widely used spice traditional remedy, contains more than 100 active phytochemicals such as gingerols, shogaols, zingerone, and volatile oils that contribute to its therapeutic actions [22, 23]. some natural ginger supplements are available in capsule form , these can be an easy way to incorporate higher doses of ginger into your diet. Arthritis & joint pain relief: ginger's anti-inflammatory effects can reduce the pain and swelling associated with arthritis , particularly osteoarthritis and rheumatoid arthritis .Nausea and digestive issues: it helps ginger has a long history of being used as a natural remedy for nausea, including morning sickness, nausea from chemotherapy, and motion sickness. Migraines & headaches: it helps the anti-inflammatory properties of ginger can help reduce the inflammation in the blood vessels in the head, alleviating migraine symptoms. Menstrual pain : it helps ginger can ease the cramping and

discomfort associated with menstruation by acting as a natural anti-inflammatory.

This review synthesizes evidence from clinical trials, meta-analyses, mechanistic studies, and traditional pharmacological literature to provide an integrated understanding of ginger's anti-inflammatory properties and its broader therapeutic potential.

1.1. BIOACTIVE CONSTITUENT WITH ANTI-INFLAMMATORY MECHANISMS :

1. Gingerols and Shogaols:

Gingerols (especially 6-gingerol) and shogaols (notably 6-shogaol) are the most potent anti-inflammatory compounds.

6-Shogaol activates Nrf2 signaling, enhancing antioxidant enzyme expression [15],and induces apoptosis in cancer cells through oxidative stress mechanisms [25].

Gingerol and its metabolites inhibit macrophage NF- κ B-mediated iNOS gene expression, thereby reducing nitric oxide–driven inflammation [26].

2. Zingerone:

Zingerone demonstrates strong antioxidant and anti-cytokine effects. It attenuates rheumatoid arthritis by regulating inflammatory cytokines and enhancing antioxidant defenses [4].

3. Volatile oils and other phytochemicals:

Volatile components extracted through multiple methods influence chemical composition and antioxidant properties [13, 22], which may impact therapeutic potency.

1.2. CLINICAL EVIDENCE SUPPORTING ANTI-INFLAMMATORY ACTIVITY :

1. Gastrointestinal and Peptic Ulcer Disease:

A recent double-blind clinical trial reported that ginger supplementation improved peptic ulcer disease outcomes and inflammatory parameters [1]. Its gastroprotective effects are also documented in cancer patients undergoing chemotherapy, where daily ginger extract enhanced antioxidant capacity [11]. Ginger and its constituents also demonstrate anti-cancer roles in gastrointestinal malignancies [14].

2. Rheumatoid Arthritis and Autoimmune Disorders:

Ginger reduces pro-inflammatory cytokines including IL-2, IL-1 β , and TNF- α in patients with active rheumatoid arthritis [8]. Mechanistic studies strongly align with these clinical findings [26, 28].

3. Cardiovascular and Metabolic Inflammation:

Supplementation significantly lowered lipoprotein(a) and high-sensitivity CRP in patients with atherosclerosis [7]. Obesity-associated inflammation, a key contributor to cardiometabolic diseases, may also benefit from ginger's anti-inflammatory effects [10].

4. Systemic Inflammation and Oxidative Stress:

Meta-analysis of clinical trials confirmed significant reductions in inflammatory markers and oxidative stress indicators with ginger supplementation [6].

5. Lipid Profile Improvement:

A systematic review revealed that ginger improves lipid metabolism, supporting its role in metabolic-inflammatory disorders [9].

Table:1 Sources and mechanisms of Bio active constituents:

Bio active constituent	Source /From	Primary Anti-inflammatory mechanisms
6-Gingerol	Fresh ginger	Inhibits NF- κ B activation ;reduces pro inflammatory cytokines TNF alpha and IL -1 beta ;suppresses COX-2 expression; decreases reactive oxygen species .
6- Shogaol	Dried or heat - treated ginger	Strong inhibitor of NF- κ B ;reduces IL-6 and nitric oxide production; more potent anti-inflammatory effect compared to gingerols; suppresses oxidative stress.
Zingerone	Heated ginger products	Acts as a potent antioxidant; scavenges free radicals; lowers lipid peroxidation ;enhances SOD, catalase, and glutathione activity; reduces cytokine release.
Paradol	Metabolites of gingerols	Decreases nitric oxide and TNF-alpha production; exhibits antioxidant and cytoprotective actions; inhibits inflammatory mediator synthesis.
Diarylheptanoids	Polyphenolic fraction of ginger rhizome	Modulates MAPK pathway; inhibits the release of pro-inflammatory mediators; shows strong antioxidant activity.
Ginger essential oils (e.g., Zingiberene)	Volatile oil fraction	Reduces oxidative stress; modulates immune cell activation ;contributes to anti-inflammatory and antimicrobial effects.

1.3. NEUROPROTECTIVE ACTION OF IMMUNOMODULATORY EFFECTS:

1. Neuroprotection :

Ginger may protect against neurodegenerative diseases by suppressing neuroinflammation and oxidative damage [3]. Antioxidant supplements, including ginger-based compounds, have shown potential benefits in neurological conditions [23].

2. Immune Regulation :

A comprehensive immunology review describes how botanical agents like ginger modulate innate and adaptive responses, offering therapeutic potential in immune-mediated diseases [2]. Ginger decreases inflammatory mediators via NF- κ B inhibition in hepatic tissue as well [20].

Traditional, Ethnomedical, and Early Pharmacological Evidence

Ethnomedical reviews highlight ginger's long history in treating inflammatory conditions, digestive ailments, and pain [30]. Earlier studies confirm inhibitory effects on pro-inflammatory mediator production in synoviocytes [29] and demonstrate broad anti-inflammatory action [28].

Phytochemical Composition and Mechanisms :

Gingerols & Shogaols :

Gingerols (e.g., 6-gingerol) exert anti-inflammatory effects through cytokine suppression and NF- κ B inhibition [26]. Shogaols, particularly 6-shogaol, activate Nrf2-dependent antioxidant responses, enhancing cellular protection [15].

Zingerone :

Zingerone reduces joint inflammation via cytokine regulation and antioxidant mechanisms, improving rheumatoid arthritis outcomes [4].

Volatile Oils & Other Compounds :

Extraction methods influence volatile composition and antioxidant capacity [13, 22]. These compounds further enhance ginger's therapeutic potential.

1.4 : Clinical Applications:

GASTROINTESTINAL HEALTH AND PEPTIC ULCER DISEASES :

Ginger supplementation improved inflammatory symptoms in peptic ulcer disease patients in a randomized clinical trial [1] and demonstrated protective antioxidant activity in chemotherapy patients [11]. It also aids in preventing gastrointestinal cancers [14].

Rheumatoid Arthritis :

Ginger significantly reduces IL-2, TNF- α , and IL-1 β expression, demonstrating potent immunomodulatory benefits [8].

Cardiovascular & Metabolic Disorders :

Ginger reduces CRP and lipoprotein(a) in atherosclerotic patients [7] and improves obesity-related inflammation [10]. Meta-analyses confirm improvements in lipid parameters [9] and systemic oxidative stress [6].

Immunomodulatory & Neuroprotective:

Roles :

Ginger modulates adaptive and innate immune responses, contributing to improved immune balance [2]. Neuroprotective actions emerge from oxidative and inflammatory pathway modulation [3, 23].

DISCUSSION :

Across two decades of research, ginger consistently demonstrates potent anti-

inflammatory, antioxidant, immunomodulatory, and metabolic regulatory effects. Clinical trials strongly support its therapeutic value in rheumatoid arthritis [8], atherosclerosis [7], peptic ulcer disease [1], and metabolic inflammation [10]. Meta-analyses confirm reductions in systemic inflammation and improvements in lipid profiles [6, 9]. Mechanistic studies provide deep insight into molecular pathways—NF-κB inhibition, iNOS suppression, Nrf2 activation, antioxidant enhancement, and modulation of cytokine expression [15, 16, 17]. These pathways align with outcomes observed in human trials, reinforcing ginger's reliability as a multi-targeted natural agent.

Notably, neuroprotective effects [3, 23] suggest expanding therapeutic relevance beyond classical inflammatory diseases. Ginger's bioactive compounds demonstrate stability variations based on processing [13], indicating that extraction and preparation methods significantly influence potency. Despite promising data, heterogeneity in dosage, formulation, and study duration remains a challenge. Future research must adopt standardized phytochemical profiling, longer-term clinical trials, and personalized dosing strategies. Overall, the cumulative evidence positions ginger as a safe, accessible, and clinically meaningful anti-inflammatory agent with broad applications in chronic inflammatory and oxidative stress-related diseases.

CONCLUSION :

Ginger (*Zingiber officinale*) is a well-established medicinal plant with potent anti-inflammatory properties supported by extensive laboratory and clinical research. Its bioactive constituents—including gingerols, shogaols, paradols, and zingerone—exert multi-targeted actions on key inflammatory pathways, particularly through inhibition of NF-κB signaling and activation of the

antioxidant Nrf2 pathway. These mechanisms lead to significant reductions in inflammatory cytokines, oxidative stress markers, and pro-inflammatory enzyme activities such as COX-2 and iNOS.

Clinical studies have consistently shown ginger's ability to alleviate symptoms of chronic inflammatory conditions including osteoarthritis, metabolic syndrome, gastrointestinal inflammation, and neuroinflammation. Ginger also demonstrates advantages in safety, tolerability, accessibility, and cultural acceptance, making it a suitable option for long-term use as a complementary therapy. Compared to conventional anti-inflammatory drugs such as NSAIDs, ginger offers similar benefits with fewer gastrointestinal and systemic adverse effects.

Despite its well-documented benefits, further high-quality randomized controlled trials are required. Randomized controlled trials are required to standardize dosage, determine optimal formulations, and clarify long-term efficacy in diverse populations. Advances in bioavailability-enhanced formulations could further strengthen ginger's therapeutic value. Overall, the evidence strongly supports ginger as a powerful natural anti-inflammatory agent with broad applications in managing chronic diseases and promoting overall health.

REFERENCES

1. Arefpour H, Sadeghi A, Zayer F, Hekmatdoost A (2024) The application of ginger supplementation on peptic ulcer disease management: a randomized, double blind, placebo-controlled clinical trial [Article]. Clin Nutr Open Sci 57:231–240 - DOI
2. Strzelec, M, Detka, J, Mieszczałk, P, Sobocińska, MK, and Majka, M.

Immunomodulation—a general review of the current state-of-the-art and new therapeutic strategies for targeting the immune system. *Front Immunol.* (2023) 14:10.3389/fimmu.2023.1127704

3. Arcusa R., Villaño D., Marhuenda J., Cano M., Cerdà B., Zafrilla P. Potential Role of Ginger (*Zingiber officinale* Roscoe) in the Prevention of Neurodegenerative Diseases. *Front. Nutr.* 2022;9:809621. doi: 10.3389/fnut.2022.809621. [DOI]
4. Bashir N, Ahmad SB, Rehman MU, Muzamil S, Bhat RR, Mir MuR, Shazly GA, Ibrahim MA, Elossaily GM, Sherif AY (2021) Zingerone (4-(four-hydroxy-3-methylphenyl) butane-two-1) modulates adjuvant-induced rheumatoid arthritis by regulating inflammatory cytokines and antioxidants. *Redox Rep* 26(1):62–70
5. Bischoff-Kont I, Fürst R (2021) Benefits of ginger and its constituent 6-shogaol in inhibiting inflammatory processes. *Pharmaceuticals* 14(6):571 – PubMed – PMC – DOI
6. Jalali, M., Mahmoodi, M., Moosavian, S. P., Jalali, R., Ferns, G., Mosallanezhad, A., et al. (2020). The effects of ginger supplementation on markers of inflammatory and oxidative stress: a systematic review and meta-analysis of clinical trials. *Phytother. Res.* 34, 1723–1733. doi:10.1002/ptr.6638
7. Babaahmadi-Rezaei H, Kheirullah A, Hesam S, Ayashi S, Aberumand M, Adel MH, Zamanpour M, Alasvand M, Amozgari Z, Noor-Behbahani M et al (2020) Decreased lipoprotein (a) and serum high-sensitivity C-reactive protein levels in male patients with atherosclerosis after supplementation with ginger: a randomized controlled trial. *ARYA Atheroscler.* 16(4):153–160
8. Aryaeian N, Mahmoudi M, Shahram F, Poursani S, Jamshidi F, Tavakoli H (2019) The effect of ginger supplementation on IL2, TNF α , and IL1 β cytokines gene expression levels in patients with active rheumatoid arthritis: A randomized controlled trial. *Med J Islam Repub Iran* 33:154
9. Pourmasoumi, M., Hadi, A., Rafie, N., Najafgholizadeh, A., Mohammadi, H., and Rouhani, M. H. (2018). The effect of ginger supplementation on lipid profile: a systematic review and meta-analysis of clinical trials. *Phytomedicine* 43, 28–36. doi:10.1016/j.phymed.2018.03.043
10. Ellulu MS, Patimah I, Khazaai H, Rahmat A, Abed Y (2017) Obesity and inflammation: the linking mechanism and the complications. *Arch Med Sci* 13(4):851–863 – PubMed – DOI
11. Danwilai K., Konmun J., Sripanidkulchai B.-O., Subongkot S. Antioxidant activity of ginger extract as a daily supplement in cancer patients receiving adjuvant chemotherapy: A pilot study. *Cancer Manag. Res.* 2017;9:11–18. Doi: 10.2147/CMAR.S124016.
12. Mohd Yusof Y.A. Gingerol and Its Role in Chronic Diseases. *Adv. Exp. Med. Biol.* 2016;929:177–207. doi: 10.1007/978-3-319-41342-6_8.
13. An K., Zhao D., Wang Z., Wu J., Xu Y., Xiao G. Comparison of different drying methods on Chinese ginger (*Zingiber officinale* Roscoe): Changes in volatiles, chemical profile, antioxidant properties, and microstructure. *Food Chem.* 2016;197:1292–1300. doi: 10.1016/j.foodchem.2015.11.033.
14. Prasad S., Tyagi A.K. Ginger and its constituents: Role in prevention and treatment of gastrointestinal cancer. *Gastroenterol. Res. Pract.* 2015;2015:142979. doi: 10.1155/2015/142979. [DOI] [PMC]
15. Peng S., Yao J., Liu Y., Duan D., Zhang X., Fang J. Activation of Nrf2 target enzymes conferring protection against oxidative stress

in PC12 cells by ginger principal constituent 6-shogaol. *Food Funct.* 2015;6:2813–2823. doi: 10.1039/C5FO00214A

16. Ilic N.M., Dey M., Poulev A.A., Logendra S., Kuhn P.E., Raskin I. Anti-inflammatory activity of grains of paradise (*Aframomum melegueta* Schum) extract. *J. Agric. Food Chem.* 2014;62:10452–10457. Doi:
17. Ilic N.M., Dey M., Poulev A.A., Logendra S., Kuhn P.E., Raskin I. Anti-inflammatory activity of grains of paradise (*Aframomum melegueta* Schum) extract. *J. Agric. Food Chem.* 2014;62:10452–10457. Doi:
18. Navaneethan U., Lashner B.A. Effects of Immunosuppression and Liver Transplantation on Inflammatory Bowel Disease in Patients With Primary Sclerosing Cholangitis. *Clin. Gastroenterol. Hepatol.* 2013;11:524–525. Doi: 10.1016/j.cgh.2013.01.020.
19. Kane S. What physicians don't know about patient dietary beliefs and behavior can make a difference. *Expert Rev. Gastroenterol. Hepatol.* 2012;6:545–547. Doi
20. Li X.-H., McGrath K.C.-Y., Nammi S., Heather A.K., Roufogalis B.D. Attenuation of liver pro-inflammatory responses by *Zingiber officinale* via inhibition of NF-kappa B activation in high-fat diet-fed rats. *Basic Clin. Pharmacol. Toxicol.* 2012;110:238–244. doi: 10.1111/j.1742-7843.2011.00791.x.
21. Pithadia A.B., Jain S. Treatment of inflammatory bowel disease (IBD) *Pharmacol. Rep.* 2011;63:629–642. doi: 10.1016/S1734-1140(11)70575-8.
22. Yang Z-N, Yang W, Peng Q, He Q, Feng Y, Luo S, et al. Volatile phytochemical composition of rhizome of ginger after extraction by headspace solid-phase microextraction, petrol ether extraction and steam distillation extraction. *Bangladesh J Pharmacol.* (2009) 4:136–43. doi:
23. Brambilla, D, Mancuso, C, Scuderi, MR, Bosco, P, Cantarella, G, Lempereur, L, et al. The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: a point of view for an assessment of the risk/benefit profile. *Nutr J.* (2008) 7:29. doi: 10.1186/1475-2891-7-29
24. Van Tilburg M.A.L., Palsson O.S., Levy R.L., Feld A.D., Turner M.J., Drossman D.A., Whitehead W.E. Complementary and alternative medicine use and cost in functional bowel disorders: A six month prospective study in a large HMO. *BMC Complement Altern Med.* 2008;8:46. doi:
25. Chen C. Y, Liu T. Z, Liu Y. W, editors. et al. [6]-shogaol (alkanone from ginger) induces apoptotic cell death of human hepatoma p53 mutant Mahlavu subline via an oxidative stress-mediated caspase-dependent mechanism. *J Agric Food Chem.* 2007;55(3):948–54. [PubMed]
26. Aktan F, Henness S, Tran V. H, Duke C. C, Roufogalis B. D, Ammit A. J. Gingerol metabolite and a synthetic analogue Capsarol inhibit macrophage NF-kappaB-mediated iNOS gene expression and enzyme activity. *Planta Med.* 2006;72(8):727–34. [PubMed]
27. Wohlmuth H, Leach DN, Smith MK, Myers SP. Gingerol content of diploid and tetraploid clones of ginger (*Zingiber officinale* roscoe). *J Agric Food Chem.* (2005) 53:5772–8. doi:
28. Grzanna R., Lindmark L., Frondoza C.G. Ginger—An herbal medicinal product with broad anti-inflammatory actions. *J. Med. Food.* 2005;8:125–132. Doi: 10.1089/jmf.2005.8.125.
29. Frondoza C. G, Sohrabi A, Polotsky A, Phan P. V, Hungerford D. S, Lindmark L. An in vitro screening assay for inhibitors of proinflammatory mediators in herbal extracts using human synoviocyte cultures. *Vitro Cell*

Dev Biol Anim. 2004;40(3-4):95–101.
[PubMed]

30. Afzal M, Al-Hadidi D, Menon M, Pesek J, Dhami M. S. Ginger: An ethnomedical, chemical and pharmacological review. Drug Metabol Drug Interact. 2001;18(3-4):159–90.
[PubMed]

HOW TO CITE: Srinivas Thota, Kothapalli Smili, Thangabalan B, Anusha Chinnapureddy, Syed Dasreen, Unnagiri Nandini, Morla Pavani, Shaik Akthar, Comprehensive Review on Anti-Inflammatory Potential of Ginger (*Zingiber officinale*), Int. J. of Pharm. Sci., 2026, Vol 4, Issue 1, 2661-2668. <https://doi.org/10.5281/zenodo.18351724>

