Jijamata Education Society's College of Pharmacy, Nandurbar (425412), Maharashtra (India).
Empagliflozin (EMPA) is a medication used in the management and treatment of type 2 diabetes mellitus. It is in the sodium-glucose co-transporter (SGLT-2) class of medication for diabetes. EMPA is given with the combination of many drugs i.e. metformin, linagliptin, pioglitazone, Dapagliflozin, Canagliflozin, etc. Hence, it is therefore very important to analyze EMPA pharmaceutically and determine whether various analytical techniques are applicable. The current review paper evaluates several approaches and published analytical techniques for EMPA research in pharmaceutical formulations, including combinations, and bulk drugs. This detailed review includes examination of around fifty-nine analytical methods published using various techniques which include HPLC, HPTLC, TLC, UPLC, and UV/ Visible-Spectrophotometry. The paper also demonstrates the reach and constraints of numerous published analytical techniques for EMPA analysis. An investigator working on EMPA will greatly benefit from such an in-depth analysis. Additional thought has also been given to several pharmaceutically different yet uncommon techniques. The diagrammatic drawings offer a statistical synopsis of the several techniques used to analyze EMPA.
One of the earliest illnesses that humans have likely encountered is diabetes mellitus (DM). About 3,000 years ago, it was first mentioned in an Egyptian manuscript. The difference between type 1 and type 2 DM was established in 1936. In 1988, type 2 diabetes was initially identified as a part of the metabolic syndrome. Hyperglycemia, insulin resistance, and relative insulin insufficiency are the hallmarks of type 2 diabetes, the most prevalent kind of the disease. Genetic, environmental, and behavioral risk factors interact to cause type 2 diabetes. Individuals with type 2 diabetes are more susceptible to a variety of short- and long-term problems, many of which result in their untimely death. Patients with type 2 diabetes have a tendency to have higher rates of morbidity and death due to the disease's prevalence, sneaky beginning, and delayed diagnosis, particularly in developing nations with limited resources like Africa.1
A novel class of medications called SGLT2 inhibitors is used to treat type 2 diabetes mellitus, which is caused by SGLT2 in the proximal tubule's first segment and SGLT1 in its distal segment.1, 2 Through an insulin-independent mechanism, SGLT2 inhibition lowers plasma glucose concentrations, increases UGE, and decreases renal glucose reabsorption, hence lowering the risk of hypoglycemia.3 Because SGLT2 inhibition reduces UGE calories and visceral and subcutaneous fat mass, it causes weight loss.4 90% of renal glucose reabsorption is facilitated by SGLT2, which is why the kidney is essential for maintaining glucose homeostasis.5 By boosting beta-cell activity, increasing total glucose excretion, and changing substrate use from glucose to lipid, the type 2 diabetes drug empagliflozin can help patients lower their fasting and postprandial glucose levels. It also prevents the reabsorption of glucose.6
High-performance liquid-chromatography (HPLC) method for EMPA in alone and combinations
Utilizing a stationary phase column, pump, and detector, HPLC is a biochemistry column chromatography technique that separates, identifies, and quantifies active chemicals. Retention durations are determined by the solvent composition.7 There are a total of twenty-nine methods that use HPLC techniques to estimate EMPA in single and combination dose forms. Table No. 1. This gives an overview of the sample matrix, column, linearity, and detection wavelength of the mentioned HPLC techniques.8–36
Table no 1. Pharmaceutical Analysis of EMPA via HPLC methods alone and combinations.
Sr. No. |
Drugs |
Pharmaceutical or Biological Matrix |
Column |
Chromatographic Conditions |
Linearity µg/mL |
Ref. |
1. |
EMPA |
Bulk & Tablet formulation |
Zorbax Eclipse Plus C18 Column (2.1 x 50 mm, 1.8 µm) |
M.P - ACN: water Flow rate - 0.5 mL/min Mode of analysis – Isocratic Detection – 235 nm |
100-1000 ng/mL |
8 |
2. |
EMPA |
Bulk & Tablet formulation |
EC-C18, (4.6×100 mm, 4 µm) |
M.P- Methanol/ ACN/0.1%OPA (75:20:5 % v/v) Flow rate – 1.0 mL/min Mode of analysis – Isocratic Detection – 222.0 nm |
10-50 µg/mL |
9 |
3. |
EMPA |
Bulk Material & Pharmaceutical dosage form |
ODS HG-5 RP C18, 5µm, 15cm x 4.6mm |
M.P- Phosphate Buffer: ACN (45:55 % v/v) (pH-2.8) Flow rate – 1.0 mL/ min Mode of analysis – Isocratic Detection – 228 nm |
0-50 µg/ml |
10 |
4. |
EMPA |
BULK AND PHARMACEUTICAL DOSAGE FORM |
a Reverse Phase Shim Pack C18 (R column (250 mm × 4.6 mm id; 5 µm) |
M.P- acetonitrile : water (60:40 % v/v) Flow rate – 1 mL/min Mode of analysis – Isocratic Detection – 223 nm |
0.0495-25μg/ml |
11 |
5. |
EMPA |
Bulk Material & Pharmaceutical dosage form |
RP-HPLC ZORBAxC18, 250 x 4.6mm, 5μm |
M.P- Acetate buffer: ACN (60:40% v/v), ( pH 3.4 ) Flow rate – 1.0 mL/min Mode of analysis – Gradient Detection – 232 nm |
10-120 µg/ml |
12 |
6. |
EMPA |
Bulk Material & Dosage form |
Inertsil C8 (250mm×4.6 mm, 5µm) |
M.P- 0.1% OPA: ACN Flow rate – 1.2 mL/min Mode of analysis – Gradient Detection – 230nm |
0.10-10.0 μg/mL |
13 |
7. |
EMPA |
Bulk Material & Tablet formulation |
Symmetry C18, Column (250 mm x 4.6 mm i.d.5µm) |
M.P- Methanol: ACN (70: 30% v/v) Flow rate – 1.0mL/min. Mode of analysis – Isocratic Detection – 245 nm |
6-14 µg/ml |
14 |
8. |
EMPA |
Bulk Material & Tablet formulation |
Zorbax Eclipse Plus Agilent C18 column (250 × 4.6 mm i.d., particle size 5 μm) |
M.P-methanol: ACN : water (60:5:35 % v/v), Flow rate – 1 mL/min Mode of analysis – Gradient Detection – 225 nm |
5–150 μg mL−1 |
15 |
9 |
EMPA |
Bulk Material & Tablet formulation |
C18 column (150 X 4.6mm) having a 5μm.) |
M.P- Phosphate buffer: Methanol (70:30% V/V) pH adjusted to 3.0 Flow rate – 1.0 mL/min Mode of analysis – Isocratic Detection – 224 nm |
25-125 µg/ml |
16 |
10 |
EMPA |
Bulk Material & Tablet formulation |
C18 column (250 mm × 4.6 mm, 5 µm particle size) |
M.P- Phosphate buffer (0.01 M Sodium Dihydrogen Phosphate) : ACN(60:40 % v/v) Flow rate – 1.0 mL/min. Mode of analysis – Isocratic Detection – 230 nm |
39.68-59.52 µg/ml |
17 |
11 |
EMPA & METF |
Bulk Material & Tablet formulation |
Inertsil ODS 3V C18 Column (250 cm Χ 4.6 mm i.d.) 5 μ.) |
M.P- Trifluoro acetic acid in water: ACN: Methanol (200:200:600) (0.1%v/v) Flow rate – 0.8mL/ min Mode of analysis – Isocratic Detection – 265nm |
25.0 -75.0µg/ml |
18 |
12 |
EMPA & METF |
Bulk Material & Tablet formulation |
Kromasil C18 Column ; ( 50 x 4.6 mm; 5m.) |
M.P- ACN: 0.1% OPA (50:50 % v/v) Flow rate – 1.0 mL/min Mode of analysis – Isocratic Detection – 260 nm |
EMPA - 3.125-18.75 µg/ml METF - 125-750 µg/ml |
19 |
13 |
EMPA & LNGP |
Bulk Material & Tablet formulation |
C18 Column BDS (250mm x 4.6 mm, 5µ) |
M.P- 0.1% Perchloric acid: ACN (60:40 % v/v) Flow rate – 1mL/min Mode of analysis – Isocratic Detection – 230nm |
EMPA - 25- 150µg/ml LNGP - 12.5-75µg/ml |
20 |
14 |
EMPA & METF |
Bulk Material & Dosage form |
C18 Column SB (4.6-mm x 25-cm; 5-µm) |
M.P- Phosphate Buffer: ACN (60:40 % v/v) Flow rate – 1.0 mL/min Mode of analysis – Isocratic Detection – 255 nm |
EMPA - 3.13- 9.38 µg/ml LNGP - 250- 750 µg/ml-1 |
21 |
15
|
EMPA & LNGP |
Bulk Material & Dosage form |
C18 reversed-phase column (150 mm×4.6 mm i.d., particle size 5 μm) |
M.P- phosphate buffer and ACN(65:35, % v/v) Flow rate – 1.0 mL/min Mode of analysis – Isocratic Detection – 226 nm |
EMPA - 5.0-15 µg /ml LNGP - 2.5- 7.5µg/ml |
22 |
16 |
EMPA & METF |
Bulk Material & Dosage form |
Symmetry Column (150 x 4.6 mm, 5m.) |
M.P- 0.1% OPA Buffer: ACN (60:40,% v/v) Flow rate – 1.0 mL/min Mode of analysis – Isocratic Detection – 230 nm |
25- 150µg/ml |
23 |
17 |
EMPA & METF |
Bulk Material & Dosage form |
Eclipse XDB C18 Column, (250 mm 4.6 mm, 5m) |
M.P- 0.01NKH2PO4 : ACN ( 50:50 v/v) pH 5.2 Flow rate – 1mL/min Mode of analysis – Isocratic Detection – 220 nm |
EMPA - 2.5-15µg/mL METF- 250-1500 µg/mL |
24 |
18 |
EMPA & LNGP |
Bulk Material & Tablet formulation |
Develosil ODS HG-5 RP C18,Column (15cm×4.6mm, 5 µm) |
M.P- Methanol: ACN (85:15% v/v) Flow rate – 1.0 ML/min Mode of analysis – Isocratic Detection – 258 nm |
EMPA - 0-14 µg/ml LNGP - 0-28 µg/ml |
25 |
19
|
EMPA & LNGP |
Bulk Material & Tablet formulation |
Shimadzu C18 column (250 mm × 4.6 mm, 5 µm) |
M.P- ACN : Buffer (80:20% v/v) pH 3.0 Flow rate – 0.80 mL/min Mode of analysis – Isocratic Detection – 226 nm |
- |
26 |
20 |
EMPA & LNGP |
Bulk Material & Human Plasma |
C18 Column (250×4.6µ×5µm) |
M.P- 0.1% OPA : ACN (68:32% v/v) pH 4.5. Flow rate – 1.0 mL/min Mode of analysis – Isocratic Detection – 218 nm |
0.01-10µg/ml |
27 |
21 |
EMPA & METF |
Bulk Material & Dosage form |
C18 Column (250×4.6 mm×2.6μm) |
M.P- ADP buffer : methanol (45:55 % v/v) (pH 3.0) Mode of analysis – Isocratic Detection – 224 nm |
- |
28 |
22 |
EMPA & LNGP |
Bulk Material & Tablet formulation |
Hypersil ODS 3V, Column (250 x 4.6 mm.5.0µ) |
M.P- A: Buffer 100% B: Water: ACN(5:95% v/v) Flow rate – 1.0 mL/min Mode of analysis – Gradient Detection – 225 nm |
EMPA - 100.09 ppm- 400.37ppm LNGP - 20.14 -80.54 |
29 |
23
|
EMPA & LNGP & PGPTZ |
Bulk Material & Dosage form |
ACE C18 Column (250 mm x 4.6 mm), 5 µm) |
M.P- OPA buffer : ACN (30 : 70 % v/v) pH 2.7 Flow rate – 0.5 mL/min Mode of analysis – Isocratic Detection – 230 nm |
10-100 ppm |
30 |
24 |
EMPA & LNGP & METF |
Bulk Material & Dosage form |
Column C18 (150 × 4.6 mm, 5 μ) |
M.P- ACN : phosphate buffer (38:62% v/v) pH 5 Flow rate – 1.0 mL/min Mode of analysis – Isocratic Detection – 222 nm. |
EMPA- 0.2-40 μg/mL LNGP- 0.1-20 μg/mL METF- 1-200 μg/mL |
31 |
25 |
EMPA & LNGP & METF |
Bulk Material & Tablet formulation |
C18 Column (250 mm x 4.6 mm, 5 µm) |
M.P- 0.1 % triethylamine buffer : ACN (40: 60 % v/v) (pH-3) Flow rate –1 mL/min. Mode of analysis – Isocratic Detection – 240 nm |
EMPA- 2.5-37.5 µg/ml LNGP- 0.5-7.5 µg/ml METF - 100-1500 µg/ml |
32 |
26 |
EMPA & LNGP & METF |
Bulk Material & Dosage form |
A Thermo Hypersil octa decyl silane Column (250 mm × 4.6 mm, 5 µm) column |
M.P- 0.043 M potassium dihydrogen orthophosphate buffer premixed with 0.05%v/v TEA (buffer pH 3.79 adjusted using orthophosphoric acid): methanol (34.4:65.6, % v/v) Flow rate – 1 ML/min−1 Mode of analysis – Gradient Detection – 225 nm |
EMPA 0.05-50 µg/ml−1 LNGP - 0.05-50 µg/ml−1 METF - 0.1-600 µg/ml−1 |
33 |
27 |
EMPA & DAPA & CANA |
Bulk Material & Human Plasma |
Agilent Zorbax RX-C8 Column (150 mm × 4.6 mm i.d., 5 mm particle size) |
M.P- ACN : aqueous 0.1 % trifluoroacetic acid (40:60,% v/v) Flow rate – 1.0 mL/min Mode of analysis – Isocratic Detection – 210 nm |
EMPA- 2-2500 μg/mL DAPA- 3.5-2500 μg/mL CANA- 1.1-2500 μg/mL |
34 |
28 |
EMPA & LNGP & CANA & METF |
Bulk Material & Tablet formulation |
Agilent Eclipse C8 Column (5 µm ´ 4.6 mm ´ 250 mm) |
M.P- 0 dipotassium hydrogen phosphate buffer: ACN : methanol (50: 25: 25,% v/v/v) Flow rate – 1.5 mL/min. Mode of analysis – Isocratic Detection – 0 -2.5 min at λ 260 nm (for METF), from 2.6-7 min at 226 nm (for LNGP and EMPA) and from 7.1-10 min at 290 nm (for CANA) |
EMPA- 1.25- 8.75 μg/ml LNGP- 10-70 μg/ml CANA – 50- 350 μg/ml METF- 500 -3500 μg/ml
|
35 |
29 |
EMPA & DAPA & CANA & ERGT |
Bulk Material & Tablet formulation |
Inertsil ODS Column (25 cm x 46 mm) x 5 µm |
M.P- TEA: ACN pH (50:50 % v/v) Flow rate – 1 mL/min Mode of analysis – Isocratic Detection – 260 nm |
EMPA - 2.5- 37.50 µg/mL DAPA 1-15 µg/ mL CANA - 30-450 µg/ml ERGT- 0.5-7.5 µg/mL |
36 |
Liquid Chromatography method for EMPA in alone and combinations
In order to improve production rates and recovery yields in preparative chromatography and to comprehend the phenomena that arise during the separation process of biomolecules, particularly in non-linear adsorption scenarios, liquid chromatography modeling is a significant issue.37 Eight different LC methods have been described for estimating EMPA in single and combination dose forms. Table No. 2. This gives an overview of the reported liquid chromatography techniques, including linearity, detection wavelength, sample matrix, and column.38–44
Table no 2. Pharmaceutical Analysis of EMPA via LC methods alone and combinations.
Sr. No. |
Drugs |
Pharmaceutical or Biological Matrix |
Column |
Chromatographic Conditions |
Linearity µg/mL |
Ref. |
1. |
EMPA |
Bulk Material & Dosage form |
Column C18 (150 x 40 mm, 5 mm) |
M.P – ACN : water (72 : 28 % v/v) Flow rate - 0.84 mL min-1 Mode of analysis – isocratic Detection – 230 nm |
40-140 mg/ml -1 |
38 |
2. |
EMPA |
Bulk Material & Human Plasma |
EC-C18, Column (4.6×100 mm, 4 µm) |
M.P - water : acetonitrile (10:90,% v/v) Flow rate – 0.3mL/Ml Mode of analysis – Isocratic |
0.0106 -0.0634 μg/ml |
39 |
3. |
EMPA |
Bulk Material & Human Plasma |
Intersil C18 Column (150 mm × 4 mm, 5 μm) |
M.P- ACN : PDP buffer pH 4 (50:50, % v/v) Flow rate – 1.0 mL/ min Mode of analysis – Isocratic Detection – 225 nm |
5–50 μg/ml |
40 |
4 |
EMPA & METF |
Bulk Material & Tablet formulation |
C18 Column (50 mm × 2.1 mm, 1.7 μm) |
M.P- 0.1% aqueous formic acid :ACN (75:25, % v/v) Flow rate – 0.2 Ml/min−1 Mode of analysis – Isocratic |
0.5-100 μg/ml & 5-2,500 μg/ml |
41 |
5 |
EMPA & METF |
Bulk Material & Human Plasma |
Orosil C18 Column (150 4.6 mm, 3μm) |
M.P- methanol : 10 mM ATA (90:10, % v/v) Flow rate – 0.8 mL/min Mode of analysis – Isocratic Detection – 222 nm. |
EMPA- 010.09-403.46 µg/ml METF- 25.44-5013.46 µg/ml |
42 |
6 |
EMPA & LNGP & METF |
Bulk Material & Tablet formulation |
Phenomenex C18 Column (250 mm×4.6 mm, 5 µm) |
M.P- Acetonitrile: Methanol: Water (27: 20: 53, v/v/v) pH 4 Flow rate –1 mL/min. Mode of analysis – Isocratic Detection – 223 nm |
EMPA- 0.5-5 µg/ml LNGP- 0.25-2.5 µg/ml METF -50-500 µg/ml |
43 |
7 |
EMPA & DAPA & CANA & METF |
Bulk Material & Tablet formulation |
Column (5 μm, 250 × 4.6 mm, Thermo Co.) |
M.P- NaH2PO4 solution (10 mM, pH 2.8) : ACN (18.5:81.5,% v/v) Flow rate – (2 mL/min) Mode of analysis – Isocratic Detection – 225 nm
|
EMPA- 0.3125–2.5 µg/ml DAPA - 0.3075–2.46 µg/ml CANA- 3.75–30 µg/ml METF - 12.5–100 µg/ml |
44 |
UPLC method for EMPA in alone and combinations.
Using fine particles, Ultra Performance Liquid Chromatography (UPLC) improves chromatographic resolution, speed, and sensitivity analysis. It is widely used in labs all over the world and saves time and solvent use. The Van Demter equation governs how separation is stimulated by improvements in packing materials. High-density, narrow columns are used in new technology to increase precision and resolution.45 There are a total of nine approaches that use UPLC techniques to estimate EMPA in single and combination dose forms. Table No. 3. This gives an overview of the reported liquid chromatography techniques, including linearity, detection wavelength, sample matrix, and column.46–53
Table no 3. Pharmaceutical Analysis of EMPA via UPLC methods alone and combinations
Sr. No. |
Drugs |
Pharmaceutical or Biological Matrix |
Column |
Chromatographic Conditions |
Linearity µg/mL |
Ref. |
1 |
EMPA |
Bulk Material & Human Plasma |
“UPLC BEH” C18 Column (50 mm×2.1 mm i.d, 1.7 µm particle size) |
M.P – aqueous trifuoroacetic acid (0.1%, pH 2.5): ACN (60:40, % v/v) Flow rate - 0.5 mL/min. Mode of analysis – isocratic Detection – 200–400 nm |
50–700 μg/ml |
46 |
2 |
EMPA |
Bulk Material & Human Plasma |
Column (100 mm×2.0 mm, 2.5 µm) |
M.P - Methanol: Buffer (75:25,% v/v) Flow rate – 0.3 mL/min Mode of analysis – Isocratic Detection – - |
10.2172 - 3075.213 µg/mL |
47 |
3 |
EMPA & METF |
Bulk Material & Dosage form |
dikma C18 Column (50×2.1 mm, 1.8 μm) |
M.P- phosphate buffer (pH-3): methanol (30:70 % v/v) Flow rate – 1.0 mL/min Mode of analysis – Isocratic Detection – 240 nm |
EMPA- 5-25 μg/ml METF -500-2500 μg/ml |
48 |
4 |
EMPA & METF |
Bulk Material & Tablet formulation |
C18 BEH(Ethylene Bridged Hybrid) UPLC Column (100mm x 2.1mm ,1.8µm) |
M.P- 0.1% OPA buffer : methanol (40:60% v/v) Flow rate – 0.25mL/ min Mode of analysis – Isocratic Detection – 254 nm |
EMPA- 15-75 µg/ml METF- 25-125 µg/ml
|
49 |
5 |
EMPA & LNGP
|
Bulk Material & Tablet formulation |
C18 Column (4.6 mm X 100 mm, 3.5 μm) |
M.P- phosphate buffer : ACN (65:35,% v/v) Flow rate – ±0.1 ml/min. Mode of analysis – Isocratic Detection – ±2 nm |
EMPA- 1–6 µg/ml LNGP- 0.5–3 µg/ml |
50 |
6
|
EMPA & LNGP
|
Bulk Material & Tablet formulation |
C18,Column (100x2.1mm, 1.6µ) |
M.P- ACN : methanol (55:45 ,% v/v) Flow rate – 0.5 mL/min Mode of analysis – Gradient Detection – 225nm |
EMPA- 1250µg/mL LNGP - 250µg/mL |
51 |
7 |
EMPA & METF & LNGP
|
Bulk Material & Dosage form |
Kromasil C18 Column (2.1 x 50 mm, 1.8µm) |
M.P- Phosphate buffer (pH 3.0): ACN(40:60,%v/v) Flow rate – 0.6 mL/min Mode of analysis – Isocratic Detection – 248nm
|
EMPA- 10-30 µg/Ml METF- 50-150 µg/ml LNGP- 5-15 µg/ml |
52 |
8 |
EMPA & METF & LNGP
|
Bulk Material & Tablet formulation |
C18 Column (100 mm × 2.1 mm, 2.2 µm) |
M.P- potassium dihydrogen phosphate buffer pH (4) : methanol (50:50,% v/v) Flow rate – 0.4 ML/min-1. Mode of analysis – Isocratic Detection – 225 nm |
EMPA- 1-32 µg.ml-1 METF- 1-100 µg.ml-1 LNGP- 0.5-16 µg.ml-1 |
53 |
TLC/HPTLC method for EMPA in alone and combinations
With its sophisticated instrumentation and great separation efficiency, HPTLC is a sophisticated type of Thin Layer Chromatography (TLC). It satisfies the quality standards for analytical labs by utilizing software-controlled evaluation, standardized reproducible chromatogram generation, and precise sample application. Using HPTLC techniques, six approaches were published in this review for estimating EMPA in single and combination dose forms.54 Table No. 4. This gives an overview of the sample matrix, column, and linearity of the reported High Performance Thin Liquid Chromatography techniques.55–60
Table no 4. Pharmaceutical Analysis of EMPA via HPTLC methods alone and combinations
Sr. No. |
Drugs |
Pharmaceutical or Biological Matrix |
Column |
Chromatographic Conditions |
Linearity µg/ML & µg /band |
Ref. |
1. |
TLC / HPTLC
EMPA & LNGP |
Bulk Material & Dosage form |
C18 Column (250 mm×4.6, 5 μm) |
M.P – 0.1% aqueous formic acid (pH3.6) : methanol : ACN (40:20:40,% V/V) Flow rate - 1 mL/min. Mode of analysis – isocratic Detection – 226 nm |
EMPA -0.4-10.0 µg/Ml LNGP- 0.2-5.0 µg/Ml
|
55 |
2. |
TLC EMPA & LNGP & GLIM |
Bulk Material & Human Plasma |
aluminum plates pre-coated with silica gel 60 F254 |
M.P - toluene: methanol: ethyl acetate (4: 3: 2 % v/v/v) Flow rate – - Mode of analysis – Isocratic Detection – 228 nm |
EMPA - 5.53 -120 µg/band LNGP- 4.68-80 µg /band GLIM - 2.61-60 µg/band |
56 |
3. |
EMPA & METF |
HPTLC |
Pre-coated silica gel aluminium plates |
M.P – 2 % Ammonium Acetate: Isopropyl Alcohol: Trietheylamine (4:6:0.1 % v/v/v) Detection – - EMPA- 24.65 ng/band-1 METF-705.21 ng/band-1 |
EMPA-125-750 ng/band METF- 5000-30000 ng/band-1 |
57 |
4. |
EMPA & LNGP
|
HPTLC |
Precoated silica plates coated with 0.2 mm layers of silica gel 60 F254 (E. Merck Germ |
M.P - Methenol : Toulene : ethylacetate (2:4:4 % v/v/v) Detection – - EMPA – 1.565-1.461 μg/band LNGP- 1.678-1.568 μg/band |
EMPA – 0.2-1.2 μg /band LNGP- 0.1-0.6 μg /band
|
58 |
5. |
EMPA & METF & LNGP
|
HPTLC |
aluminum plates pre-coated with silica gel 60 F254 |
M.P- n-butanol : water :glacial acetic acid (6:3:1, % v/v) Detection – - EMPA- 0.019 METF - 1.696 LNGP- 0.00 |
EMPA- 0.1–0.7 μg/band METF - 10–70 μg/band LNGP- 0.05–0.35 μg/band |
59 |
6. |
EMPA & METF |
HPTLC |
aluminium backed pre-coated with silica gel 60F254 |
M.P- Toluene: 3% Ammonium Acetate in Methanol: Ethyl acetate: Ammonia (3: 5: 2: 0.4 % v/v/v/v) Detection – 230 nm
|
EMPA- 500-2500 METF -500-2500 |
60 |
UV-Visible Spectroscopy methods for ZLT in alone and combinations
UV-VIS spectroscopy is thought to be the most important spectrophotometric technique that is most commonly used for the examination of a variety of substances. The measurement of electromagnetic radiation's interaction with materials at a particular wavelength is the basis of this technique.61 There are three approaches in all that use UV-visible spectroscopy to estimate EMPA in single and combination dose forms. Table No. 5. This is an overview of the spectrophotometric techniques that have been documented, including the sample matrix, techniques, linearity, and detection wavelength.62–68
Table no 5 Pharmaceutical Analysis of EMPA via UV Spectroscopic methods alone and combinations
Sr. No. |
Drugs |
Solvent & Method |
Λmax (Nm) |
R2 |
Linearity |
Ref. |
1. |
EMPA |
SOLVENT – Ethanol, methanol and water METHOD – UV spectrophotometer |
223 nm |
0.9986 |
1-30 µg/ml |
62 |
2. |
EMPA & LNGP |
SOLVENT – Methanol METHOD – Zero order |
276nm And 293nm |
EMPA-0.9963 LNGP- 0.9996 |
EMPA- 5-80 μg/ml LNGP-5-80 μg/ml |
63 |
3. |
EMPA & LNGP & METF |
SOLVENT – Methanol METHOD – UV spectrophotometer |
224.6nm 226nm 237.2 nm |
EMPA- 0.9985 LNGP- 0.9995 METF- 0.9976 |
2-10 µg/ml |
64 |
4. |
EMPA |
SOLVENT – Methanol METHOD- spectrofluorimetric |
455nm |
0.9997 |
50–1000 µg/ml-1 |
65 |
5. |
EMPA |
SOLVENT – Methanol METHOD – spectrofluorimetric |
226.5 nm |
0.9928
|
500–5000 µg/ml |
66 |
6. |
EMPA & LNGP
|
SOLVENT – Methanol METHOD – Zero order |
239 nm 232 nm
|
EMPA- 1 LNGP- 0.9996
|
EMPA- 5–30 μg/ml LNGP- 2–12 μg/ml |
67 |
7. |
EMPA & METF
|
SOLVENT – Methanol METHOD – Zero order |
225 nm 237 nm |
EMPA- 1 LNGP- 0.9999 |
EMPA- 0.20 - 0.48 μg mL−1 METF- 0.35 μg -0.19 μg mL−1 |
68 |
DISCUSSION
There are Fifty Nine analytical techniques for estimating the amounts of pharmaceuticals like EMPA in conjunction with other drugs like METF, LINA, GLIM, AGBZ, CANA, DAPA & PGPTZ, employing HPLC , LC, UPLC, TLC/HPTLC and UV Spectrophotometry. By using differtent type of solvents (methanol,water, acetonitrile and different buffer solutions) and columns etc… In this paper, it has been mentioned how many methods have been reported which shown in figure 2.
Figure 2: Total no of Methods
CONCLUSION
In this analytical review, various methods for the detection of EMPA in pharmaceutical formulations, human plasma, and bulk form were examined, primarily utilizing high-performance liquid chromatography. The analysis revealed that a common solvent mixture of acetonitrile, water, and methanol is often employed for sample processing, while solvents such as acetonitrile, methanol, and various buffer solutions with acidic pH levels are utilized for separation. Isocratic mode is predominantly used for HPLC analysis, particularly in reverse phase chromatography. The review provides valuable insights into the diverse analytical techniques and methods employed for the analysis of EMPA. Researchers can benefit from the comprehensive information presented, gaining knowledge of the wide range of approaches available for the analysis of these compounds. Additionally, the review underscores the importance of method selection and optimization to ensure accurate and reliable results in pharmaceutical analysis and related fields.
ACKNOWLEDGEMENT
The principal of the Jijamata Collage of Pharmacy Nandurbar, Dist. Nandurbar (MS) 425412, is gratefully acknowledged by the authors for providing the essential library resources.
Abbreviations Used
REFERENCES
Ritik Ahire*, Nikita Sonawane, Mayur Chavan, Vinod Chaure, Ravindra Patil, Analytical Review of Empagliflozin: A Sodium-Glucose Cotransporter 2 (SGLT-2) Inhibitor in the Management of Type 2 Diabetes Mellitus, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 3, 133-148. https://doi.org/10.5281/zenodo.14961123