View Article

Abstract

Empagliflozin (EMPA) is a medication used in the management and treatment of type 2 diabetes mellitus. It is in the sodium-glucose co-transporter (SGLT-2) class of medication for diabetes. EMPA is given with the combination of many drugs i.e. metformin, linagliptin, pioglitazone, Dapagliflozin, Canagliflozin, etc. Hence, it is therefore very important to analyze EMPA pharmaceutically and determine whether various analytical techniques are applicable. The current review paper evaluates several approaches and published analytical techniques for EMPA research in pharmaceutical formulations, including combinations, and bulk drugs. This detailed review includes examination of around fifty-nine analytical methods published using various techniques which include HPLC, HPTLC, TLC, UPLC, and UV/ Visible-Spectrophotometry. The paper also demonstrates the reach and constraints of numerous published analytical techniques for EMPA analysis. An investigator working on EMPA will greatly benefit from such an in-depth analysis. Additional thought has also been given to several pharmaceutically different yet uncommon techniques. The diagrammatic drawings offer a statistical synopsis of the several techniques used to analyze EMPA.

Keywords

Empagliflozin, EMPA, Diabetes mellitus, SGLT-2

Introduction

One of the earliest illnesses that humans have likely encountered is diabetes mellitus (DM). About 3,000 years ago, it was first mentioned in an Egyptian manuscript. The difference between type 1 and type 2 DM was established in 1936. In 1988, type 2 diabetes was initially identified as a part of the metabolic syndrome. Hyperglycemia, insulin resistance, and relative insulin insufficiency are the hallmarks of type 2 diabetes, the most prevalent kind of the disease. Genetic, environmental, and behavioral risk factors interact to cause type 2 diabetes. Individuals with type 2 diabetes are more susceptible to a variety of short- and long-term problems, many of which result in their untimely death. Patients with type 2 diabetes have a tendency to have higher rates of morbidity and death due to the disease's prevalence, sneaky beginning, and delayed diagnosis, particularly in developing nations with limited resources like Africa.1

A novel class of medications called SGLT2 inhibitors is used to treat type 2 diabetes mellitus, which is caused by SGLT2 in the proximal tubule's first segment and SGLT1 in its distal segment.1, 2 Through an insulin-independent mechanism, SGLT2 inhibition lowers plasma glucose concentrations, increases UGE, and decreases renal glucose reabsorption, hence lowering the risk of hypoglycemia.3 Because SGLT2 inhibition reduces UGE calories and visceral and subcutaneous fat mass, it causes weight loss.4 90% of renal glucose reabsorption is facilitated by SGLT2, which is why the kidney is essential for maintaining glucose homeostasis.5 By boosting beta-cell activity, increasing total glucose excretion, and changing substrate use from glucose to lipid, the type 2 diabetes drug empagliflozin can help patients lower their fasting and postprandial glucose levels. It also prevents the reabsorption of glucose.6

High-performance liquid-chromatography (HPLC) method for EMPA in alone and combinations

Utilizing a stationary phase column, pump, and detector, HPLC is a biochemistry column chromatography technique that separates, identifies, and quantifies active chemicals. Retention durations are determined by the solvent composition.7 There are a total of twenty-nine methods that use HPLC techniques to estimate EMPA in single and combination dose forms. Table No. 1. This gives an overview of the sample matrix, column, linearity, and detection wavelength of the mentioned HPLC techniques.8–36

Table no 1. Pharmaceutical Analysis of EMPA via HPLC methods alone and combinations.

Sr.

No.

Drugs

Pharmaceutical or Biological Matrix

Column

Chromatographic Conditions

Linearity

µg/mL

Ref.

1.

EMPA

Bulk & Tablet formulation

Zorbax Eclipse Plus C18 Column

(2.1 x 50 mm, 1.8 µm)

M.P - ACN: water

Flow rate - 0.5 mL/min

Mode of analysis – Isocratic

Detection – 235 nm

100-1000 ng/mL

8

2.

EMPA

Bulk & Tablet formulation

EC-C18, (4.6×100  mm, 4  µm)

M.P- Methanol/ ACN/0.1%OPA (75:20:5 % v/v)

Flow rate – 1.0 mL/min

Mode of analysis – Isocratic

Detection – 222.0 nm

10-50 µg/mL

9

3.

EMPA

Bulk Material & Pharmaceutical dosage form

ODS HG-5 RP C18, 5µm, 15cm x 4.6mm

M.P- Phosphate Buffer: ACN (45:55 % v/v)

(pH-2.8)

Flow rate – 1.0 mL/ min

Mode of analysis – Isocratic

Detection – 228 nm

0-50 µg/ml

10

4.

EMPA

BULK AND PHARMACEUTICAL DOSAGE FORM

a Reverse Phase Shim Pack C18 (R column (250 mm × 4.6 mm id; 5 µm)

M.P- acetonitrile : water  (60:40 % v/v)

Flow rate – 1 mL/min

Mode of analysis – Isocratic

Detection – 223 nm

0.0495-25μg/ml

11

5.

EMPA

Bulk Material & Pharmaceutical dosage form

RP-HPLC ZORBAxC18,

250 x 4.6mm, 5μm

M.P- Acetate buffer:

ACN (60:40% v/v),

( pH 3.4 )

Flow rate –  1.0 mL/min

Mode of analysis – Gradient

Detection – 232 nm

10-120 µg/ml

12

6.

EMPA

Bulk Material & Dosage form

Inertsil C8 (250mm×4.6 mm, 5µm)

M.P- 0.1% OPA: ACN

Flow rate – 1.2 mL/min

Mode of analysis – Gradient

Detection – 230nm

0.10-10.0 μg/mL

13

7.

EMPA

Bulk Material & Tablet formulation

Symmetry C18, Column

(250 mm x 4.6 mm i.d.5µm)

M.P- Methanol: ACN (70: 30% v/v)

Flow rate – 1.0mL/min.

Mode of analysis – Isocratic

Detection – 245 nm

6-14 µg/ml

14

8.

EMPA

Bulk Material & Tablet formulation

Zorbax Eclipse Plus Agilent C18 column (250 × 4.6 mm i.d., particle size 5 μm)

M.P-methanol: ACN : water

(60:5:35 % v/v),

Flow rate – 1 mL/min

Mode of analysis – Gradient

Detection – 225 nm

5–150 μg mL−1

15

9

EMPA

Bulk Material & Tablet formulation

C18 column

(150 X 4.6mm) having a 5μm.)

M.P- Phosphate buffer: Methanol (70:30% V/V)

pH adjusted to 3.0

Flow rate – 1.0 mL/min

Mode of analysis – Isocratic

Detection – 224 nm

25-125 µg/ml

16

10

EMPA

Bulk Material & Tablet formulation

C18 column

(250 mm × 4.6 mm, 5 µm particle size)

 

M.P- Phosphate buffer (0.01 M Sodium Dihydrogen Phosphate) : ACN(60:40 % v/v)

Flow rate – 1.0 mL/min.

Mode of analysis – Isocratic

Detection – 230 nm

39.68-59.52 µg/ml

17

11

EMPA

&

METF

Bulk Material & Tablet formulation

Inertsil ODS 3V C18 Column

(250 cm Χ 4.6 mm i.d.) 5 μ.)

M.P- Trifluoro acetic acid in water: ACN: Methanol (200:200:600) (0.1%v/v)

Flow rate – 0.8mL/ min

Mode of analysis – Isocratic

Detection – 265nm

25.0 -75.0µg/ml

18

12

EMPA

&

METF

Bulk Material & Tablet formulation

Kromasil C18 Column ;

( 50 x 4.6 mm; 5m.)

M.P- ACN: 0.1% OPA

(50:50 % v/v)

Flow rate – 1.0 mL/min

Mode of analysis – Isocratic

Detection – 260 nm

EMPA - 3.125-18.75 µg/ml

METF - 125-750 µg/ml

19

13

EMPA

&

LNGP

Bulk Material & Tablet formulation

C18 Column BDS (250mm x 4.6 mm, 5µ)

M.P- 0.1% Perchloric acid: ACN (60:40 % v/v)

Flow rate – 1mL/min

Mode of analysis – Isocratic

Detection – 230nm

EMPA - 25- 150µg/ml

LNGP - 12.5-75µg/ml

20

14

EMPA

&

METF

Bulk Material & Dosage form

C18 Column

SB (4.6-mm x 25-cm; 5-µm)

M.P- Phosphate Buffer: ACN

(60:40 % v/v)

Flow rate – 1.0 mL/min

Mode of analysis – Isocratic

Detection – 255 nm

EMPA - 3.13- 9.38 µg/ml

LNGP - 250- 750 µg/ml-1

21

 

 

15

 

 

 

EMPA

&

LNGP

Bulk Material & Dosage form

C18 reversed-phase column

(150 mm×4.6 mm i.d., particle size 5 μm)

M.P- phosphate buffer and ACN(65:35, %     v/v)

Flow rate – 1.0 mL/min

Mode of analysis – Isocratic

Detection – 226 nm

EMPA - 5.0-15 µg /ml

LNGP - 2.5- 7.5µg/ml

22

16

EMPA

&

METF

Bulk Material & Dosage form

Symmetry Column

(150 x 4.6 mm, 5m.)

M.P-  0.1% OPA Buffer: ACN

(60:40,% v/v)

Flow rate – 1.0 mL/min

Mode of analysis – Isocratic

Detection – 230 nm

25- 150µg/ml

23

17

EMPA

&

METF

Bulk Material & Dosage form

Eclipse XDB C18 Column, (250 mm 4.6 mm, 5m)

M.P- 0.01NKH2PO4 : ACN ( 50:50 v/v)

pH 5.2

Flow rate – 1mL/min

Mode of analysis – Isocratic

Detection – 220 nm

EMPA - 2.5-15µg/mL

METF- 250-1500 µg/mL

24

18

EMPA

&

LNGP

Bulk Material & Tablet formulation

Develosil ODS HG-5 RP C18,Column (15cm×4.6mm, 5 µm)

M.P- Methanol: ACN (85:15% v/v)

Flow rate – 1.0 ML/min

Mode of analysis – Isocratic

Detection – 258 nm

EMPA - 0-14 µg/ml

LNGP - 0-28 µg/ml

25

 

 

19

 

 

 

EMPA

&

LNGP

Bulk Material & Tablet formulation

Shimadzu C18 column

(250 mm × 4.6 mm, 5 µm)

M.P- ACN : Buffer (80:20% v/v) pH 3.0

Flow rate – 0.80 mL/min

Mode of analysis – Isocratic

Detection – 226 nm

-

26

20

EMPA

&

LNGP

Bulk Material & Human Plasma

C18 Column

(250×4.6µ×5µm)

M.P-  0.1% OPA : ACN

(68:32% v/v) pH 4.5.

Flow rate – 1.0 mL/min

Mode of analysis – Isocratic

Detection – 218 nm

0.01-10µg/ml

27

21

EMPA

&

METF

Bulk Material & Dosage form

C18 Column

(250×4.6 mm×2.6μm)

M.P- ADP buffer : methanol

(45:55 % v/v) (pH 3.0)

Mode of analysis – Isocratic

Detection – 224 nm

-

28

22

EMPA

&

LNGP

Bulk Material & Tablet formulation

Hypersil ODS 3V, Column

(250 x 4.6 mm.5.0µ)

M.P- A: Buffer 100%

B: Water: ACN(5:95% v/v)

Flow rate – 1.0 mL/min

Mode of analysis – Gradient

Detection – 225 nm

EMPA - 100.09 ppm- 400.37ppm

LNGP - 20.14 -80.54

29

 

 

23

 

 

 

EMPA

&

LNGP

&

PGPTZ

Bulk Material & Dosage form

ACE C18 Column

(250 mm x 4.6 mm), 5 µm)

M.P- OPA buffer : ACN

(30 : 70 % v/v) pH 2.7

Flow rate – 0.5 mL/min

Mode of analysis – Isocratic

Detection – 230 nm

10-100 ppm

30

24

EMPA

&

LNGP

&

METF

Bulk Material & Dosage form

Column C18

(150 × 4.6 mm, 5 μ)

M.P-  ACN : phosphate buffer

(38:62% v/v) pH 5

Flow rate – 1.0 mL/min

Mode of analysis – Isocratic

Detection – 222 nm.

EMPA- 0.2-40 μg/mL

LNGP- 0.1-20 μg/mL

METF-  1-200 μg/mL

31

25

EMPA

&

LNGP

&

METF

Bulk Material & Tablet formulation

C18  Column (250 mm x 4.6 mm, 5 µm)

M.P- 0.1 % triethylamine buffer : ACN

(40: 60 % v/v) (pH-3)

Flow rate –1 mL/min.

Mode of analysis – Isocratic

Detection – 240 nm

EMPA- 2.5-37.5 µg/ml

LNGP- 0.5-7.5 µg/ml

METF - 100-1500 µg/ml

32

26

EMPA

&

LNGP

&

METF

Bulk Material & Dosage form

A Thermo Hypersil octa decyl silane  Column

(250 mm × 4.6 mm, 5 µm) column

M.P- 0.043 M potassium dihydrogen orthophosphate buffer premixed with 0.05%v/v TEA (buffer pH 3.79 adjusted using orthophosphoric acid): methanol  (34.4:65.6, % v/v)

Flow rate –  1 ML/min−1

Mode of analysis – Gradient

Detection – 225 nm

EMPA 0.05-50 µg/ml−1

LNGP - 0.05-50 µg/ml−1

METF - 0.1-600 µg/ml−1

33

27

EMPA

&

DAPA

&

CANA

Bulk Material & Human Plasma

Agilent Zorbax RX-C8 Column (150 mm × 4.6 mm i.d., 5 mm particle size)

M.P-  ACN : aqueous 0.1 %  trifluoroacetic acid

(40:60,%  v/v)

Flow rate – 1.0 mL/min

Mode of analysis – Isocratic

Detection – 210 nm

EMPA- 2-2500 μg/mL

DAPA- 3.5-2500 μg/mL

CANA-  1.1-2500 μg/mL

34

28

EMPA

&

LNGP

&

CANA

&

METF

Bulk Material & Tablet formulation

Agilent Eclipse C8 Column

(5 µm ´ 4.6 mm ´ 250 mm)

M.P- 0 dipotassium hydrogen phosphate buffer: ACN : methanol

(50: 25: 25,% v/v/v)

Flow rate – 1.5 mL/min.

Mode of analysis – Isocratic

Detection – 0 -2.5 min at λ 260 nm (for METF), from 2.6-7 min at 226 nm (for LNGP and EMPA) and from 7.1-10 min at 290 nm (for CANA)

EMPA- 1.25- 8.75 μg/ml

LNGP- 10-70 μg/ml

CANA – 50- 350 μg/ml

METF- 500 -3500 μg/ml

 

35

29

EMPA

&

DAPA

&

CANA

&

ERGT

Bulk Material & Tablet formulation

Inertsil ODS Column

(25 cm x 46 mm) x 5 µm

M.P- TEA: ACN pH (50:50 % v/v)

Flow rate –  1 mL/min

Mode of analysis – Isocratic

Detection – 260 nm

EMPA - 2.5- 37.50 µg/mL

DAPA  1-15 µg/ mL

CANA - 30-450 µg/ml

ERGT- 0.5-7.5 µg/mL

36

Liquid Chromatography method for EMPA in alone and combinations 

In order to improve production rates and recovery yields in preparative chromatography and to comprehend the phenomena that arise during the separation process of biomolecules, particularly in non-linear adsorption scenarios, liquid chromatography modeling is a significant issue.37 Eight different LC methods have been described for estimating EMPA in single and combination dose forms. Table No. 2. This gives an overview of the reported liquid chromatography techniques, including linearity, detection wavelength, sample matrix, and column.38–44

Table no 2. Pharmaceutical Analysis of EMPA via LC methods alone and combinations.

Sr.

No.

Drugs

Pharmaceutical or Biological Matrix

Column

Chromatographic Conditions

Linearity

µg/mL

Ref.

1.

EMPA

Bulk Material & Dosage form

Column C18

(150 x 40 mm, 5 mm)

M.P – ACN : water (72 : 28 % v/v)

Flow rate - 0.84 mL min-1

Mode of analysis – isocratic

Detection – 230 nm

40-140 mg/ml -1

38

2.

EMPA

Bulk Material & Human Plasma

EC-C18, Column

(4.6×100  mm, 4  µm)

M.P - water : acetonitrile (10:90,%  v/v)

Flow rate – 0.3mL/Ml

Mode of analysis – Isocratic

0.0106 -0.0634 μg/ml

39

3.

EMPA

Bulk Material & Human Plasma

Intersil  C18 Column

(150 mm × 4 mm, 5 μm)

M.P- ACN : PDP  buffer pH 4 (50:50, % v/v)

Flow rate – 1.0 mL/ min

Mode of analysis – Isocratic

Detection – 225 nm

5–50 μg/ml

40

4

EMPA

&

METF

Bulk Material & Tablet formulation

C18 Column (50 mm × 2.1 mm, 1.7 μm)

M.P-  0.1% aqueous formic acid :ACN

(75:25, % v/v)

Flow rate – 0.2 Ml/min−1

Mode of analysis – Isocratic

0.5-100 μg/ml

&

5-2,500 μg/ml

41

5

EMPA

&

METF

Bulk Material & Human Plasma

Orosil C18 Column

(150 4.6 mm, 3μm)

M.P-  methanol : 10 mM ATA (90:10, % v/v)

Flow rate – 0.8 mL/min

Mode of analysis – Isocratic

Detection – 222 nm.

EMPA- 010.09-403.46 µg/ml

METF-  25.44-5013.46 µg/ml

42

6

EMPA

&

LNGP

&

METF

Bulk Material & Tablet formulation

Phenomenex C18 Column

(250 mm×4.6 mm, 5 µm)

M.P- Acetonitrile: Methanol: Water                                   (27: 20: 53, v/v/v) pH 4

Flow rate –1 mL/min.

Mode of analysis – Isocratic

Detection – 223 nm

EMPA- 0.5-5 µg/ml

LNGP- 0.25-2.5 µg/ml

METF -50-500 µg/ml

43

7

EMPA

&

DAPA

&

CANA

&

METF

Bulk Material & Tablet formulation

Column

(5 μm, 250 × 4.6 mm, Thermo Co.)

M.P- NaH2PO4 solution (10 mM, pH 2.8) : ACN (18.5:81.5,% v/v)

Flow rate –  (2 mL/min)

Mode of analysis – Isocratic

Detection – 225 nm

 

 

 

 

EMPA-  0.3125–2.5 µg/ml

DAPA - 0.3075–2.46 µg/ml

CANA- 3.75–30 µg/ml

METF - 12.5–100 µg/ml

44

UPLC method for EMPA in alone and combinations.

Using fine particles, Ultra Performance Liquid Chromatography (UPLC) improves chromatographic resolution, speed, and sensitivity analysis. It is widely used in labs all over the world and saves time and solvent use. The Van Demter equation governs how separation is stimulated by improvements in packing materials. High-density, narrow columns are used in new technology to increase precision and resolution.45 There are a total of nine approaches that use UPLC techniques to estimate EMPA in single and combination dose forms. Table No. 3. This gives an overview of the reported liquid chromatography techniques, including linearity, detection wavelength, sample matrix, and column.46–53

Table no 3. Pharmaceutical Analysis of EMPA via UPLC methods alone and combinations

Sr.

No.

Drugs

Pharmaceutical or Biological Matrix

Column

Chromatographic Conditions

Linearity

µg/mL

Ref.

1

EMPA

Bulk Material & Human Plasma

“UPLC  BEH” C18 Column

(50 mm×2.1 mm i.d, 1.7 µm particle size)

M.P – aqueous trifuoroacetic acid (0.1%, pH 2.5): ACN (60:40, % v/v)

Flow rate - 0.5 mL/min.

Mode of analysis – isocratic

Detection – 200–400 nm

50–700 μg/ml

46

2

EMPA

Bulk Material & Human Plasma

Column

(100 mm×2.0 mm, 2.5 µm)

M.P -  Methanol: Buffer (75:25,% v/v)

Flow rate – 0.3 mL/min

Mode of analysis – Isocratic

Detection – -

10.2172 - 3075.213 µg/mL

47

3

EMPA

&

METF

Bulk Material & Dosage form

dikma C18

Column

(50×2.1 mm, 1.8 μm)

M.P-  phosphate buffer (pH-3): methanol (30:70 % v/v)

Flow rate –  1.0 mL/min

Mode of analysis – Isocratic

Detection –  240 nm

EMPA- 5-25 μg/ml

METF -500-2500 μg/ml

48

4

EMPA

&

METF

Bulk Material & Tablet formulation

C18 BEH(Ethylene Bridged Hybrid) UPLC Column

(100mm x 2.1mm ,1.8µm)

M.P-  0.1% OPA buffer : methanol (40:60% v/v)

Flow rate – 0.25mL/ min

Mode of analysis – Isocratic

Detection – 254 nm

EMPA- 15-75 µg/ml

METF-  25-125 µg/ml

 

49

5

EMPA

&

LNGP

 

Bulk Material & Tablet formulation

C18 Column

(4.6 mm X 100 mm, 3.5 μm)

M.P- phosphate buffer : ACN

(65:35,% v/v)

Flow rate – ±0.1 ml/min.

Mode of analysis – Isocratic

Detection – ±2 nm

EMPA- 1–6 µg/ml

LNGP- 0.5–3 µg/ml

50

 

6

 

 

 

EMPA

&

LNGP

 

Bulk Material & Tablet formulation

C18,Column

(100x2.1mm, 1.6µ)

M.P-   ACN : methanol (55:45 ,%  v/v)

Flow rate – 0.5 mL/min

Mode of analysis – Gradient

Detection – 225nm

EMPA- 1250µg/mL

LNGP - 250µg/mL

 

51

7

EMPA

&

METF

&

LNGP

 

Bulk Material & Dosage form

Kromasil C18 Column

(2.1 x 50 mm, 1.8µm)

M.P-  Phosphate buffer    (pH 3.0): ACN(40:60,%v/v)

Flow rate – 0.6 mL/min

Mode of analysis – Isocratic

Detection – 248nm

 

EMPA- 10-30 µg/Ml

METF-  50-150 µg/ml

LNGP- 5-15 µg/ml

52

8

EMPA

&

METF

&

LNGP

 

Bulk Material & Tablet formulation

C18 Column (100 mm × 2.1 mm, 2.2 µm)

M.P- potassium dihydrogen phosphate buffer pH (4) : methanol (50:50,% v/v)

Flow rate – 0.4 ML/min-1.

Mode of analysis – Isocratic

Detection – 225 nm

EMPA- 1-32 µg.ml-1

METF-  1-100 µg.ml-1

LNGP- 0.5-16 µg.ml-1

53

TLC/HPTLC method for EMPA in alone and combinations

With its sophisticated instrumentation and great separation efficiency, HPTLC is a sophisticated type of Thin Layer Chromatography (TLC). It satisfies the quality standards for analytical labs by utilizing software-controlled evaluation, standardized reproducible chromatogram generation, and precise sample application. Using HPTLC techniques, six approaches were published in this review for estimating EMPA in single and combination dose forms.54 Table No. 4. This gives an overview of the sample matrix, column, and linearity of the reported High Performance Thin Liquid Chromatography techniques.55–60

Table no 4. Pharmaceutical Analysis of EMPA via HPTLC methods alone and combinations

Sr.

No.

Drugs

Pharmaceutical or Biological Matrix

Column

Chromatographic Conditions

Linearity

µg/ML &   µg /band

Ref.

1.

TLC / HPTLC

 

EMPA

&

LNGP

Bulk Material & Dosage form

C18 Column (250 mm×4.6, 5 μm)

M.P –   0.1% aqueous formic acid (pH3.6) : methanol : ACN (40:20:40,% V/V)

Flow rate -   1 mL/min.

Mode of analysis – isocratic

Detection –  226 nm

EMPA -0.4-10.0 µg/Ml

LNGP- 0.2-5.0 µg/Ml

 

55

2.

TLC

EMPA

&

LNGP

&

GLIM

Bulk Material & Human Plasma

aluminum plates pre-coated with silica gel 60 F254

M.P -   toluene: methanol: ethyl acetate (4: 3: 2 % v/v/v)

Flow rate –  -

Mode of analysis – Isocratic

Detection –  228 nm

EMPA -  5.53 -120 µg/band

LNGP- 4.68-80 µg /band

GLIM - 2.61-60 µg/band

56

3.

EMPA

&

METF

HPTLC

Pre-coated silica gel aluminium plates

M.P – 2 % Ammonium Acetate: Isopropyl Alcohol: Trietheylamine (4:6:0.1 % v/v/v)

Detection – -

EMPA- 24.65 ng/band-1

METF-705.21 ng/band-1

EMPA-125-750 ng/band

METF- 5000-30000 ng/band-1

57

4.

EMPA

&

LNGP

 

HPTLC

Precoated silica plates coated with 0.2 mm layers of silica gel 60 F254 (E. Merck Germ

M.P -   Methenol  : Toulene : ethylacetate (2:4:4 % v/v/v)

Detection – -

EMPA – 1.565-1.461 μg/band

LNGP- 1.678-1.568 μg/band

EMPA – 0.2-1.2 μg /band

LNGP- 0.1-0.6 μg /band

 

58

5.

EMPA

&

METF

&

LNGP

 

HPTLC

aluminum plates pre-coated with silica gel 60 F254

M.P-  n-butanol : water :glacial acetic acid  (6:3:1, % v/v)

Detection – -

EMPA-  0.019

METF - 1.696

LNGP- 0.00

EMPA-  0.1–0.7 μg/band

METF - 10–70 μg/band

LNGP- 0.05–0.35 μg/band

59

6.

EMPA

&

METF

HPTLC

aluminium backed pre-coated with silica gel 60F254

M.P-   Toluene: 3% Ammonium Acetate in Methanol: Ethyl acetate: Ammonia (3: 5: 2: 0.4 % v/v/v/v)

Detection –  230 nm

 

EMPA- 500-2500

METF -500-2500

60

UV-Visible Spectroscopy methods for ZLT in alone and combinations

UV-VIS spectroscopy is thought to be the most important spectrophotometric technique that is most commonly used for the examination of a variety of substances. The measurement of electromagnetic radiation's interaction with materials at a particular wavelength is the basis of this technique.61 There are three approaches in all that use UV-visible spectroscopy to estimate EMPA in single and combination dose forms. Table No. 5. This is an overview of the spectrophotometric techniques that have been documented, including the sample matrix, techniques, linearity, and detection wavelength.62–68

Table no 5 Pharmaceutical Analysis of EMPA via UV Spectroscopic methods alone and combinations

Sr.

No.

Drugs

Solvent & Method

Λmax (Nm)

R2

Linearity

Ref.

1.

EMPA

SOLVENT – Ethanol, methanol and water

METHOD –  UV spectrophotometer

223 nm

0.9986

1-30 µg/ml

62

2.

EMPA

&

LNGP

SOLVENT – Methanol

METHOD – Zero order

276nm

And

293nm

EMPA-0.9963

LNGP- 0.9996

EMPA- 5-80 μg/ml

LNGP-5-80 μg/ml

63

3.

EMPA

&

LNGP

&

METF

SOLVENT – Methanol

METHOD –  UV spectrophotometer

224.6nm

226nm

237.2 nm

EMPA- 0.9985

LNGP- 0.9995

METF- 0.9976

 

2-10 µg/ml

64

4.

EMPA

SOLVENT – Methanol

METHOD-    spectrofluorimetric

455nm

0.9997

50–1000 µg/ml-1

65

5.

EMPA

SOLVENT –   Methanol

METHOD –  spectrofluorimetric

226.5 nm

0.9928

 

500–5000 µg/ml

66

6.

EMPA

&

LNGP

 

SOLVENT – Methanol

METHOD –  Zero order

239 nm

232 nm

 

EMPA-  1

LNGP- 0.9996

 

EMPA- 5–30 μg/ml

LNGP- 2–12 μg/ml

67

7.

EMPA

&

METF

 

SOLVENT – Methanol

METHOD – Zero order

225 nm

237 nm

EMPA-  1

LNGP- 0.9999

EMPA- 0.20 - 0.48 μg mL−1

METF- 0.35 μg -0.19 μg mL−1

68

DISCUSSION

There are Fifty Nine analytical techniques for estimating the amounts of pharmaceuticals like EMPA in conjunction with other drugs like METF, LINA, GLIM, AGBZ, CANA, DAPA & PGPTZ, employing HPLC , LC, UPLC, TLC/HPTLC and UV Spectrophotometry. By using differtent type of solvents (methanol,water, acetonitrile and different buffer solutions) and columns etc… In this paper, it has been mentioned how many methods have been reported which shown in figure 2.

Figure 2: Total no of Methods

CONCLUSION

In this analytical review, various methods for the detection of EMPA in pharmaceutical formulations, human plasma, and bulk form were examined, primarily utilizing high-performance liquid chromatography. The analysis revealed that a common solvent mixture of acetonitrile, water, and methanol is often employed for sample processing, while solvents such as acetonitrile, methanol, and various buffer solutions with acidic pH levels are utilized for separation. Isocratic mode is predominantly used for HPLC analysis, particularly in reverse phase chromatography. The review provides valuable insights into the diverse analytical techniques and methods employed for the analysis of EMPA. Researchers can benefit from the comprehensive information presented, gaining knowledge of the wide range of approaches available for the analysis of these compounds. Additionally, the review underscores the importance of method selection and optimization to ensure accurate and reliable results in pharmaceutical analysis and related fields.

ACKNOWLEDGEMENT

The principal of the Jijamata Collage of Pharmacy Nandurbar, Dist. Nandurbar (MS) 425412, is gratefully acknowledged by the authors for providing the essential library resources.

Abbreviations Used

  • EMPA – Empagliflozin
  • ACN – Acetonitrile
  • METF – Metformin
  • LINA – Linagliptin
  • CANA – Canagliflozin
  • DAPA – Dapagliflozin
  • PGPTZ – Piogliptazone.

REFERENCES

  1. Olokoba AB, Obateru OA, and Olokoba LB: Type 2 diabetes mellitus: a review of current trends, Oman Medical Journal (2012), 27(4):269.
  2. Forycka J, Hajdys J, Krzemi?ska J, Wilczopolski P, Wronka M, M?ynarska E, et al.: New insights into the use of empagliflozin—a comprehensive review, Biomedicines (2022), 10(12):3294.
  3. Ndefo UA, Anidiobi NO, Basheer E, and Eaton AT: Empagliflozin (Jardiance): a novel SGLT2 inhibitor for the treatment of type-2 diabetes, Pharmacy and Therapeutics (2015), 40(6):364.
  4. Scheen AJ: Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor, Clinical Pharmacokinetics (2014), 53(3):213-225.
  5. Chen L, Magliano DJ, and Zimmet PZ: The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives, Nature Reviews Endocrinology (2012), 8(4):228-236.
  6. Dall TM, Narayan KV, Gillespie KB, Gallo PD, Blanchard TD, Solcan M, et al.: Detecting type 2 diabetes and prediabetes among asymptomatic adults in the United States: modeling American Diabetes Association versus US Preventive Services Task Force diabetes screening guidelines, Population Health Metrics (2014), 12:1-14.
  7. Malviya R, Bansal V, Pal OP, and Sharma PK: High performance liquid chromatography: a short review, Journal of Global Pharma Technology (2010), 2(5):22-26.
  8. Manoel JW, Primieri GB, Bueno LM, Giordani CF, Sorrentino JM, Dallegrave A, et al.: Determination of empagliflozin in the presence of its organic impurities and identification of two degradation products using UHPLC-QTOF/MS, Microchemical Journal (2021), 161:105795.
  9. Pathak S, and Mishra P: Stability-indicating HPLC-DAD method for the determination of empagliflozin, Future Journal of Pharmaceutical Sciences (2021), 7(1):181.
  10. Shirisha V, Bolle K, Santosh I, Rao KNV, and Rajeswar DK: A new simple method development, validation and forced degradation studies of empagliflozin by using RP-HPLC, International Journal of Pharmacy and Biological Sciences (2019), 9(1):25-35.
  11. Basak M, Gouru SR, Bera A, and Nagappan KV: A rapid and sensitive RP-HPLC method for the quantitative analysis of empagliflozin in bulk and pharmaceutical dosage form, International Journal of Applied Pharmaceutics (2019), 11(5):60-65.
  12. Murugesan A, and Mukthinuthalapati A: Novel simplified analytical method for stress degradation study of empagliflozin an oral anti-diabetic agent by RP-HPLC method, Acta Scientific Pharmaceutical Sciences (2022), 6(1).
  13. Jaiswal SH, Katariya MV, Katariya VR, Karva GS, and Koshe K: Validated stability-indicating HPLC method for determination of process-related impurities in empagliflozin drug substances, World Journal of Pharmaceutical Research (2017), 6(7):1025-37.
  14. Maroky AS, Sreenivas SA, Lohitha K, Kumar EV, Roja P, and Sreeja K: Method development and validation for the estimation of empagliflozin in bulk form and marketed tablet dosage form by RP-HPLC, (2022).
  15. Burin SL, Lourenço RL, Doneda M, Müller EI, Paula FR, and Adams AIH: Development of an HPLC-UV method to assay empagliflozin tablets and identification of the major photoproduct by quadrupole time-of-flight mass spectrometry, Journal of Chromatographic Science (2021), 59(6):526-535.
  16. Ahmad A, and Maryam Z: Development and validation of novel stability-indicating RP-HPLC method for quantitative estimation of empagliflozin in tablets, Indian Journal of Pharmacy & Drug Studies (2023), 76-81.
  17. Patil SD, Amurutkar SV, and Upasani CD: Development and validation of stability-indicating RP-HPLC method for empagliflozin, Asian Journal of Pharmaceutical Analysis (2016), 6(4):201-206.
  18. Rao MS, and Rambhau DK: Development and validation for the simultaneous estimation in of metformin and empagliflozin in drug product by RP-HPLC, European Journal of Biomedical and Pharmaceutical Sciences (2018), 5(2):404-410.
  19. Kumar DV, and Rao JS: A new validated stability-indicating RP-HPLC method for simultaneous estimation of metformin hydrochloride and empagliflozin in tablet dosage forms, IRJPMS (2018), 1:16-22.
  20. Naazneen S, and Sridevi A: Development and validation of stability-indicating RP-HPLC method for simultaneous estimation of empagliflozin and linagliptin in tablet formulation, Der Pharmacia Lettre (2016), 8(17):57-65.
  21. Amin A, Mohamed S, Abo-Taleb M, and Amin M: Simultaneous estimation of metformin and empagliflozin in pharmaceutical dosage form by HPLC method. IOSR Journal of Pharmacy and Biological Sciences (2019), 14(1):75-80.
  22. El Sheikh R, Hassan WS, Youssef E, Hamdi AY, Badahdah NA, Alzuhiri ME, and Gouda AAE: Development and validation of rapid stability-indicating high-performance liquid chromatography method for the determination of linagliptin and empagliflozin in pure and dosage forms. Development (2020), 13(4).
  23. Rohini M, and Ajitha M: Stability indicating method development and validation for determination of metformin and empagliflozin in bulk and pharmaceutical dosage form. World Journal of Pharmaceutical Sciences (2022), 82-89.
  24. BhavaniSailu A, Sankar PR, Babu PS, Anuhya G, Kusuma K, and Praneetha KN: Development and validation of reverse-phase HPLC method for the simultaneous determination of empagliflozin and metformin in pharmaceutical dosage form.
  25. Mahendra S, Rajamani A, and Yashodha A: Method development and validation for the simultaneous estimation of empagliflozin and linagliptin in bulk form and marketed tablet dosage forms by RP-HPLC.
  26. Laxman B, Yojana K, Chaitali K, Shivam K, Sagar M, and Godge RK: A rapid and sensitive stability indicating RP-HPLC method development for the quantitative analysis of empagliflozin and linagliptin in bulk and synthetic mixture. International Journal of Health Sciences (2020), III:5526-5538.
  27. Donepudi S, and Achanta S: Validated HPLC-UV method for simultaneous estimation of linagliptin and empagliflozin in human plasma. International Journal of Applied Pharmaceutics (2018), 10(3):56-61.
  28. Riaz MK, Niaz S, Asghar MA, Shafiq Y, Zehravi M, Shah SSH, and Khan K: Simultaneous determination, validation, and forced degradation studies of metformin and empagliflozin using a new HPLC analytical method. Latin American Journal of Pharmacy (2020), 39(11):2257-65.
  29. Vankalapati KR, Alegete P, and Boodida S: Stability-indicating HPLC method development and validation for simultaneous estimation of metformin, dapagliflozin, and saxagliptin in bulk drug and pharmaceutical dosage form. Biomedical Chromatography (2022), 36(7):e5384.
  30. Ahmad R, Hailat M, Jaber M, Alkhawaja B, Rasras A, Al-Shdefat R, and Abu Dayyih W: RP-HPLC method development for simultaneous estimation of empagliflozin, pioglitazone, and metformin in bulk and tablet dosage forms. Acta Poloniae Pharmaceutica - Drug Research (2021), 78:305-315.
  31. Gurrala S, Raj S, CVS S, and Anumolu PD: Quality-by-design approach for chromatographic analysis of metformin, empagliflozin, and linagliptin. Journal of Chromatographic Science (2022), 60(1):68-80.
  32. Unade TT, and Pawar AK: New validated stability-indicating RP-HPLC method for the simultaneous determination of metformin hydrochloride, linagliptin, and empagliflozin in bulk and pharmaceutical dosage forms. International Journal of Applied Pharmaceutics (2022), 68-76.
  33. Marie AA, Salim MM, Kamal AH, Hammad SF, and Elkhoudary MM: Analytical quality by design based on design space in reversed-phase-high performance liquid chromatography analysis for simultaneous estimation of metformin, linagliptin, and empagliflozin. Royal Society Open Science (2022), 9(6):220215.
  34. Mabrouk MM, Soliman SM, El-Agizy HM, and Mansour FR: Ultrasound-assisted dispersive liquid–liquid microextraction for determination of three gliflozins in human plasma by HPLC/DAD. Journal of Chromatography B (2020), 1136:121932.
  35. Moussa BA, Mahrouse MA, and Fawzy MG: Application of experimental design in HPLC method optimization and robustness for the simultaneous determination of canagliflozin, empagliflozin, linagliptin, and metformin in tablet. Biomedical Chromatography (2021), 35(10):e5155.
  36. Murugesan A, and Mukthinuthalapati A: Simultaneous estimation of gliflozin derivatives canagliflozin, dapagliflozin, empagliflozin, and ertugliflozin using RP-HPLC methods. Acta Scientific Pharmaceutical Sciences (2022), 6(1).
  37. Bellot JC, and Condoret JS: Liquid chromatography modelling: a review. Process Biochemistry (1991), 26(6):363-376.
  38. Manoel JW, Primieri GB, Bueno LM, Wingert NR, Volpato NM, Garcia CV, and Steppe M: The application of quality by design in the development of the liquid chromatography method to determine empagliflozin in the presence of its organic impurities. RSC Advances (2020), 10(12):7313-7320.
  39. Ayoub BM, Mowaka S, Elzanfaly ES, Ashoush N, Elmazar MM, and Mousa SA: Pharmacokinetic evaluation of empagliflozin in healthy Egyptian volunteers using LC-MS/MS and comparison with other ethnic populations. Scientific Reports (2017), 7(1):2583.
  40. Abdel?Ghany MF, Ayad MF, and Tadros MM: Liquid chromatographic and spectrofluorimetric assays of empagliflozin: Applied to degradation kinetic study and content uniformity testing. Luminescence (2018), 33(5):919-932.
  41. Ayoub BM, and Mowaka S: LC–MS/MS determination of empagliflozin and metformin. Journal of Chromatographic Science (2017), 55(7):742-747.
  42. Wattamwar T, Mungantiwar A, Halde S, and Pandita N: Development of simultaneous determination of empagliflozin and metformin in human plasma using liquid chromatography–mass spectrometry and application to pharmacokinetics. European Journal of Mass Spectrometry (2020), 26(2):117-130.
  43. Patel KY, Dedania ZR, Dedania RR, and Patel U: QbD approach to HPLC method development and validation of ceftriaxone sodium. Future Journal of Pharmaceutical Sciences (2021), 7:1-10.
  44. Hassib ST, Taha EA, Elkady EF, and Barakat GH: Validated liquid chromatographic method for the determination of (canagliflozin, dapagliflozin, or empagliflozin) and metformin in the presence of (1-cyanoguanidine). Journal of Chromatographic Science (2019), 57(8):697-707.
  45. Reddy T, Balammal G, and Kumar A: Ultra performance liquid chromatography: an introduction and review, International Journal of Pharmaceutical Research and Analysis (2012), 2(1):24-31.
  46. Mabrouk `1MM, Soliman SM, El-Agizy HM, and Mansour FR: A UPLC/DAD method for simultaneous determination of empagliflozin and three related substances in spiked human plasma, BMC Chemistry (2019), 13:1-9.
  47. Abou-Omar MN, Kenawy M, Youssef AO, Alharthi S, Attia MS, and Mohamed EH: Validation of a novel UPLC-MS/MS method for estimation of metformin and empagliflozin simultaneously in human plasma using freezing lipid precipitation approach and its application to pharmacokinetic study, Journal of Pharmaceutical and Biomedical Analysis (2021), 200:114078.
  48. Nalwade SU, Reddy VR, Rao DD, and Kumar Morisetti N: A validated stability indicating ultra performance liquid chromatographic method for determination of impurities in Esomeprazole magnesium gastro-resistant tablets, Journal of Pharmaceutical and Biomedical Analysis (2012), 57:109-114.
  49. Padmaja N, and Veerabhadram G: A novel stability indicating RP-UPLC-DAD method for determination of metformin and empagliflozin in bulk and tablet dosage form, Oriental Journal of Chemistry (2017), 33(4):1949.
  50. El-Desouky EA, Abdel-Raoof AM, Abdel-Fattah A, Abdel-Zaher A, Osman AO, Abdel-Monem AH, and Morshedy S: Determination of linagliptin and empagliflozin by UPLC and HPTLC techniques aided by lean six sigma approach, Biomedical Chromatography (2021), 35(7):e5102.
  51. Jagadabi V, Kumar PN, Pamidi S, Ramaprasad LA, and Nagaraju D: International Research Journal of Pharmacy.
  52. Nannaware PS, Siddheshwar SS, and Kolhe MH: A review on analytical methods for estimation of linagliptin in bulk and tablet dosage form, Research Journal of Science and Technology (2021), 13(2):127-132.
  53. Ayoub BM: UPLC simultaneous determination of empagliflozin, linagliptin and metformin, RSC Advances (2015), 5(116):95703-95709.
  54. Sonia K, and Lakshmi KS: HPTLC method development and validation: An overview, Journal of Pharmaceutical Sciences and Research (2017), 9(5):652.
  55. Rizk M, Attia AK, Mohamed HY, and Elshahed MS: Development and validation of thin-layer chromatography and high-performance thin-layer chromatography methods for the simultaneous determination of linagliptin and empagliflozin in their co-formulated dosage form, Journal of Planar Chromatography–Modern TLC (2020), 33(6):647-661.
  56. Abbas NS, Derayea SM, Omar MA, and Saleh GA: Innovative TLC-densitometric method with fluorescent detection for simultaneous determination of ternary anti-diabetic mixture in pharmaceutical formulations and human plasma, Microchemical Journal (2021), 165:106131.
  57. Munde MK, Kulkarni NS, Sen AK, and Sen DB: A novel validated stability indicating analytical method for simultaneous quantification of metformin hydrochloride and empagliflozin in bulk and marketed formulation by HPTLC using box-wilson experimental design approach.
  58. Bhole RP, Wankhede SB, and Pandey M: Stability indicating HPTLC method for simultaneous estimation of empagliflozin and linagliptin in pharmaceutical formulation, Analytical Chemistry Letters (2017), 7(1):76-85.
  59. Patel IM, Chhalotiya UK, Jani HD, Kansara D, and Shah DA: Densitometric simultaneous estimation of combination of empagliflozin, linagliptin and metformin hydrochloride used in the treatment of type 2 diabetes mellitus, Journal of Planar Chromatography–Modern TLC (2020), 33:109-118.
  60. Dedhiya PP, Singh RS, Shah PJ, and Shah SA: Development and validation of high performance thin layer chromatographic method for estimation of metformin hydrochloride and empagliflozin in combined tablet dosage form using quality by design approach, Pharma Science Monitor (2019), 10(2):83-100.
  61. Kumari B, and Khansili A: Analytical method development and validation of UV-visible spectrophotometric method for the estimation of vildagliptin in gastric medium, Drug Research (2020), 70(09):417-423.
  62. Shaik B, and Jorige A: Development and validation of UV spectroscopic method for estimation of empagliflozin in rat plasma for pharmacokinetic applications.
  63. Rane SS, Chaudhari RY, Patil VR, and Barde LG: Development and validation of UV spectrophotometric method for simultaneous estimation of empagliflozin and linagliptin in bulk drugs and pharmaceutical dosage form, Doctrines of Integrative Medicine, Pharmacy and Science International Journal (2021), 1(01):44-53.
  64. Sen AK, Pandey H, Maheshwari RA, Zanwar AS, Velmurugan R, and Sen DB: Novel UV spectroscopic methods for simultaneous assessment of empagliflozin, linagliptin and metformin in ternary mixture, Indian Journal of Pharmacy Education and Research (2022), 56(4s):s669-81.
  65. Omar MA, Ahmed HM, Batakoushy HA, and Hamid MAA: New spectrofluorimetric analysis of empagliflozin in its tablets and human plasma using two-level full factorial design, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2020), 235:118307.
  66. Ayoub BM, El Zahar N, Michel H, and Tadros M: Economic spectrofluorometric bioanalysis of empagliflozin in rats’ plasma, Journal of Analytical Methods in Chemistry (2021), 2021:1-7.
  67. Elmasry MS, Hassan WS, Merey HA, and Nour IM: Simple mathematical data processing method for the determination of sever overlapped spectra of linagliptin and empagliflozin in their pure forms and pharmaceutical formulation: Fourier self deconvoluted method, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2021), 254:119609.
  68. Ayoub BM: Development and validation of simple spectrophotometric and chemometric methods for simultaneous determination of empagliflozin and metformin: Applied to recently approved pharmaceutical formulation, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2016), 168:118-122.

Reference

  1. Olokoba AB, Obateru OA, and Olokoba LB: Type 2 diabetes mellitus: a review of current trends, Oman Medical Journal (2012), 27(4):269.
  2. Forycka J, Hajdys J, Krzemi?ska J, Wilczopolski P, Wronka M, M?ynarska E, et al.: New insights into the use of empagliflozin—a comprehensive review, Biomedicines (2022), 10(12):3294.
  3. Ndefo UA, Anidiobi NO, Basheer E, and Eaton AT: Empagliflozin (Jardiance): a novel SGLT2 inhibitor for the treatment of type-2 diabetes, Pharmacy and Therapeutics (2015), 40(6):364.
  4. Scheen AJ: Pharmacokinetic and pharmacodynamic profile of empagliflozin, a sodium glucose co-transporter 2 inhibitor, Clinical Pharmacokinetics (2014), 53(3):213-225.
  5. Chen L, Magliano DJ, and Zimmet PZ: The worldwide epidemiology of type 2 diabetes mellitus—present and future perspectives, Nature Reviews Endocrinology (2012), 8(4):228-236.
  6. Dall TM, Narayan KV, Gillespie KB, Gallo PD, Blanchard TD, Solcan M, et al.: Detecting type 2 diabetes and prediabetes among asymptomatic adults in the United States: modeling American Diabetes Association versus US Preventive Services Task Force diabetes screening guidelines, Population Health Metrics (2014), 12:1-14.
  7. Malviya R, Bansal V, Pal OP, and Sharma PK: High performance liquid chromatography: a short review, Journal of Global Pharma Technology (2010), 2(5):22-26.
  8. Manoel JW, Primieri GB, Bueno LM, Giordani CF, Sorrentino JM, Dallegrave A, et al.: Determination of empagliflozin in the presence of its organic impurities and identification of two degradation products using UHPLC-QTOF/MS, Microchemical Journal (2021), 161:105795.
  9. Pathak S, and Mishra P: Stability-indicating HPLC-DAD method for the determination of empagliflozin, Future Journal of Pharmaceutical Sciences (2021), 7(1):181.
  10. Shirisha V, Bolle K, Santosh I, Rao KNV, and Rajeswar DK: A new simple method development, validation and forced degradation studies of empagliflozin by using RP-HPLC, International Journal of Pharmacy and Biological Sciences (2019), 9(1):25-35.
  11. Basak M, Gouru SR, Bera A, and Nagappan KV: A rapid and sensitive RP-HPLC method for the quantitative analysis of empagliflozin in bulk and pharmaceutical dosage form, International Journal of Applied Pharmaceutics (2019), 11(5):60-65.
  12. Murugesan A, and Mukthinuthalapati A: Novel simplified analytical method for stress degradation study of empagliflozin an oral anti-diabetic agent by RP-HPLC method, Acta Scientific Pharmaceutical Sciences (2022), 6(1).
  13. Jaiswal SH, Katariya MV, Katariya VR, Karva GS, and Koshe K: Validated stability-indicating HPLC method for determination of process-related impurities in empagliflozin drug substances, World Journal of Pharmaceutical Research (2017), 6(7):1025-37.
  14. Maroky AS, Sreenivas SA, Lohitha K, Kumar EV, Roja P, and Sreeja K: Method development and validation for the estimation of empagliflozin in bulk form and marketed tablet dosage form by RP-HPLC, (2022).
  15. Burin SL, Lourenço RL, Doneda M, Müller EI, Paula FR, and Adams AIH: Development of an HPLC-UV method to assay empagliflozin tablets and identification of the major photoproduct by quadrupole time-of-flight mass spectrometry, Journal of Chromatographic Science (2021), 59(6):526-535.
  16. Ahmad A, and Maryam Z: Development and validation of novel stability-indicating RP-HPLC method for quantitative estimation of empagliflozin in tablets, Indian Journal of Pharmacy & Drug Studies (2023), 76-81.
  17. Patil SD, Amurutkar SV, and Upasani CD: Development and validation of stability-indicating RP-HPLC method for empagliflozin, Asian Journal of Pharmaceutical Analysis (2016), 6(4):201-206.
  18. Rao MS, and Rambhau DK: Development and validation for the simultaneous estimation in of metformin and empagliflozin in drug product by RP-HPLC, European Journal of Biomedical and Pharmaceutical Sciences (2018), 5(2):404-410.
  19. Kumar DV, and Rao JS: A new validated stability-indicating RP-HPLC method for simultaneous estimation of metformin hydrochloride and empagliflozin in tablet dosage forms, IRJPMS (2018), 1:16-22.
  20. Naazneen S, and Sridevi A: Development and validation of stability-indicating RP-HPLC method for simultaneous estimation of empagliflozin and linagliptin in tablet formulation, Der Pharmacia Lettre (2016), 8(17):57-65.
  21. Amin A, Mohamed S, Abo-Taleb M, and Amin M: Simultaneous estimation of metformin and empagliflozin in pharmaceutical dosage form by HPLC method. IOSR Journal of Pharmacy and Biological Sciences (2019), 14(1):75-80.
  22. El Sheikh R, Hassan WS, Youssef E, Hamdi AY, Badahdah NA, Alzuhiri ME, and Gouda AAE: Development and validation of rapid stability-indicating high-performance liquid chromatography method for the determination of linagliptin and empagliflozin in pure and dosage forms. Development (2020), 13(4).
  23. Rohini M, and Ajitha M: Stability indicating method development and validation for determination of metformin and empagliflozin in bulk and pharmaceutical dosage form. World Journal of Pharmaceutical Sciences (2022), 82-89.
  24. BhavaniSailu A, Sankar PR, Babu PS, Anuhya G, Kusuma K, and Praneetha KN: Development and validation of reverse-phase HPLC method for the simultaneous determination of empagliflozin and metformin in pharmaceutical dosage form.
  25. Mahendra S, Rajamani A, and Yashodha A: Method development and validation for the simultaneous estimation of empagliflozin and linagliptin in bulk form and marketed tablet dosage forms by RP-HPLC.
  26. Laxman B, Yojana K, Chaitali K, Shivam K, Sagar M, and Godge RK: A rapid and sensitive stability indicating RP-HPLC method development for the quantitative analysis of empagliflozin and linagliptin in bulk and synthetic mixture. International Journal of Health Sciences (2020), III:5526-5538.
  27. Donepudi S, and Achanta S: Validated HPLC-UV method for simultaneous estimation of linagliptin and empagliflozin in human plasma. International Journal of Applied Pharmaceutics (2018), 10(3):56-61.
  28. Riaz MK, Niaz S, Asghar MA, Shafiq Y, Zehravi M, Shah SSH, and Khan K: Simultaneous determination, validation, and forced degradation studies of metformin and empagliflozin using a new HPLC analytical method. Latin American Journal of Pharmacy (2020), 39(11):2257-65.
  29. Vankalapati KR, Alegete P, and Boodida S: Stability-indicating HPLC method development and validation for simultaneous estimation of metformin, dapagliflozin, and saxagliptin in bulk drug and pharmaceutical dosage form. Biomedical Chromatography (2022), 36(7):e5384.
  30. Ahmad R, Hailat M, Jaber M, Alkhawaja B, Rasras A, Al-Shdefat R, and Abu Dayyih W: RP-HPLC method development for simultaneous estimation of empagliflozin, pioglitazone, and metformin in bulk and tablet dosage forms. Acta Poloniae Pharmaceutica - Drug Research (2021), 78:305-315.
  31. Gurrala S, Raj S, CVS S, and Anumolu PD: Quality-by-design approach for chromatographic analysis of metformin, empagliflozin, and linagliptin. Journal of Chromatographic Science (2022), 60(1):68-80.
  32. Unade TT, and Pawar AK: New validated stability-indicating RP-HPLC method for the simultaneous determination of metformin hydrochloride, linagliptin, and empagliflozin in bulk and pharmaceutical dosage forms. International Journal of Applied Pharmaceutics (2022), 68-76.
  33. Marie AA, Salim MM, Kamal AH, Hammad SF, and Elkhoudary MM: Analytical quality by design based on design space in reversed-phase-high performance liquid chromatography analysis for simultaneous estimation of metformin, linagliptin, and empagliflozin. Royal Society Open Science (2022), 9(6):220215.
  34. Mabrouk MM, Soliman SM, El-Agizy HM, and Mansour FR: Ultrasound-assisted dispersive liquid–liquid microextraction for determination of three gliflozins in human plasma by HPLC/DAD. Journal of Chromatography B (2020), 1136:121932.
  35. Moussa BA, Mahrouse MA, and Fawzy MG: Application of experimental design in HPLC method optimization and robustness for the simultaneous determination of canagliflozin, empagliflozin, linagliptin, and metformin in tablet. Biomedical Chromatography (2021), 35(10):e5155.
  36. Murugesan A, and Mukthinuthalapati A: Simultaneous estimation of gliflozin derivatives canagliflozin, dapagliflozin, empagliflozin, and ertugliflozin using RP-HPLC methods. Acta Scientific Pharmaceutical Sciences (2022), 6(1).
  37. Bellot JC, and Condoret JS: Liquid chromatography modelling: a review. Process Biochemistry (1991), 26(6):363-376.
  38. Manoel JW, Primieri GB, Bueno LM, Wingert NR, Volpato NM, Garcia CV, and Steppe M: The application of quality by design in the development of the liquid chromatography method to determine empagliflozin in the presence of its organic impurities. RSC Advances (2020), 10(12):7313-7320.
  39. Ayoub BM, Mowaka S, Elzanfaly ES, Ashoush N, Elmazar MM, and Mousa SA: Pharmacokinetic evaluation of empagliflozin in healthy Egyptian volunteers using LC-MS/MS and comparison with other ethnic populations. Scientific Reports (2017), 7(1):2583.
  40. Abdel?Ghany MF, Ayad MF, and Tadros MM: Liquid chromatographic and spectrofluorimetric assays of empagliflozin: Applied to degradation kinetic study and content uniformity testing. Luminescence (2018), 33(5):919-932.
  41. Ayoub BM, and Mowaka S: LC–MS/MS determination of empagliflozin and metformin. Journal of Chromatographic Science (2017), 55(7):742-747.
  42. Wattamwar T, Mungantiwar A, Halde S, and Pandita N: Development of simultaneous determination of empagliflozin and metformin in human plasma using liquid chromatography–mass spectrometry and application to pharmacokinetics. European Journal of Mass Spectrometry (2020), 26(2):117-130.
  43. Patel KY, Dedania ZR, Dedania RR, and Patel U: QbD approach to HPLC method development and validation of ceftriaxone sodium. Future Journal of Pharmaceutical Sciences (2021), 7:1-10.
  44. Hassib ST, Taha EA, Elkady EF, and Barakat GH: Validated liquid chromatographic method for the determination of (canagliflozin, dapagliflozin, or empagliflozin) and metformin in the presence of (1-cyanoguanidine). Journal of Chromatographic Science (2019), 57(8):697-707.
  45. Reddy T, Balammal G, and Kumar A: Ultra performance liquid chromatography: an introduction and review, International Journal of Pharmaceutical Research and Analysis (2012), 2(1):24-31.
  46. Mabrouk `1MM, Soliman SM, El-Agizy HM, and Mansour FR: A UPLC/DAD method for simultaneous determination of empagliflozin and three related substances in spiked human plasma, BMC Chemistry (2019), 13:1-9.
  47. Abou-Omar MN, Kenawy M, Youssef AO, Alharthi S, Attia MS, and Mohamed EH: Validation of a novel UPLC-MS/MS method for estimation of metformin and empagliflozin simultaneously in human plasma using freezing lipid precipitation approach and its application to pharmacokinetic study, Journal of Pharmaceutical and Biomedical Analysis (2021), 200:114078.
  48. Nalwade SU, Reddy VR, Rao DD, and Kumar Morisetti N: A validated stability indicating ultra performance liquid chromatographic method for determination of impurities in Esomeprazole magnesium gastro-resistant tablets, Journal of Pharmaceutical and Biomedical Analysis (2012), 57:109-114.
  49. Padmaja N, and Veerabhadram G: A novel stability indicating RP-UPLC-DAD method for determination of metformin and empagliflozin in bulk and tablet dosage form, Oriental Journal of Chemistry (2017), 33(4):1949.
  50. El-Desouky EA, Abdel-Raoof AM, Abdel-Fattah A, Abdel-Zaher A, Osman AO, Abdel-Monem AH, and Morshedy S: Determination of linagliptin and empagliflozin by UPLC and HPTLC techniques aided by lean six sigma approach, Biomedical Chromatography (2021), 35(7):e5102.
  51. Jagadabi V, Kumar PN, Pamidi S, Ramaprasad LA, and Nagaraju D: International Research Journal of Pharmacy.
  52. Nannaware PS, Siddheshwar SS, and Kolhe MH: A review on analytical methods for estimation of linagliptin in bulk and tablet dosage form, Research Journal of Science and Technology (2021), 13(2):127-132.
  53. Ayoub BM: UPLC simultaneous determination of empagliflozin, linagliptin and metformin, RSC Advances (2015), 5(116):95703-95709.
  54. Sonia K, and Lakshmi KS: HPTLC method development and validation: An overview, Journal of Pharmaceutical Sciences and Research (2017), 9(5):652.
  55. Rizk M, Attia AK, Mohamed HY, and Elshahed MS: Development and validation of thin-layer chromatography and high-performance thin-layer chromatography methods for the simultaneous determination of linagliptin and empagliflozin in their co-formulated dosage form, Journal of Planar Chromatography–Modern TLC (2020), 33(6):647-661.
  56. Abbas NS, Derayea SM, Omar MA, and Saleh GA: Innovative TLC-densitometric method with fluorescent detection for simultaneous determination of ternary anti-diabetic mixture in pharmaceutical formulations and human plasma, Microchemical Journal (2021), 165:106131.
  57. Munde MK, Kulkarni NS, Sen AK, and Sen DB: A novel validated stability indicating analytical method for simultaneous quantification of metformin hydrochloride and empagliflozin in bulk and marketed formulation by HPTLC using box-wilson experimental design approach.
  58. Bhole RP, Wankhede SB, and Pandey M: Stability indicating HPTLC method for simultaneous estimation of empagliflozin and linagliptin in pharmaceutical formulation, Analytical Chemistry Letters (2017), 7(1):76-85.
  59. Patel IM, Chhalotiya UK, Jani HD, Kansara D, and Shah DA: Densitometric simultaneous estimation of combination of empagliflozin, linagliptin and metformin hydrochloride used in the treatment of type 2 diabetes mellitus, Journal of Planar Chromatography–Modern TLC (2020), 33:109-118.
  60. Dedhiya PP, Singh RS, Shah PJ, and Shah SA: Development and validation of high performance thin layer chromatographic method for estimation of metformin hydrochloride and empagliflozin in combined tablet dosage form using quality by design approach, Pharma Science Monitor (2019), 10(2):83-100.
  61. Kumari B, and Khansili A: Analytical method development and validation of UV-visible spectrophotometric method for the estimation of vildagliptin in gastric medium, Drug Research (2020), 70(09):417-423.
  62. Shaik B, and Jorige A: Development and validation of UV spectroscopic method for estimation of empagliflozin in rat plasma for pharmacokinetic applications.
  63. Rane SS, Chaudhari RY, Patil VR, and Barde LG: Development and validation of UV spectrophotometric method for simultaneous estimation of empagliflozin and linagliptin in bulk drugs and pharmaceutical dosage form, Doctrines of Integrative Medicine, Pharmacy and Science International Journal (2021), 1(01):44-53.
  64. Sen AK, Pandey H, Maheshwari RA, Zanwar AS, Velmurugan R, and Sen DB: Novel UV spectroscopic methods for simultaneous assessment of empagliflozin, linagliptin and metformin in ternary mixture, Indian Journal of Pharmacy Education and Research (2022), 56(4s):s669-81.
  65. Omar MA, Ahmed HM, Batakoushy HA, and Hamid MAA: New spectrofluorimetric analysis of empagliflozin in its tablets and human plasma using two-level full factorial design, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2020), 235:118307.
  66. Ayoub BM, El Zahar N, Michel H, and Tadros M: Economic spectrofluorometric bioanalysis of empagliflozin in rats’ plasma, Journal of Analytical Methods in Chemistry (2021), 2021:1-7.
  67. Elmasry MS, Hassan WS, Merey HA, and Nour IM: Simple mathematical data processing method for the determination of sever overlapped spectra of linagliptin and empagliflozin in their pure forms and pharmaceutical formulation: Fourier self deconvoluted method, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2021), 254:119609.
  68. Ayoub BM: Development and validation of simple spectrophotometric and chemometric methods for simultaneous determination of empagliflozin and metformin: Applied to recently approved pharmaceutical formulation, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (2016), 168:118-122.

Photo
Ritik Ahire
Corresponding author

Jijamata Education Society's College of Pharmacy, Nandurbar (425412), Maharashtra (India).

Photo
Nikita Sonawane
Co-author

Jijamata Education Society's College of Pharmacy, Nandurbar (425412), Maharashtra (India).

Photo
Mayur Chavan
Co-author

Jijamata Education Society's College of Pharmacy, Nandurbar (425412), Maharashtra (India).

Photo
Vinod Chaure
Co-author

Jijamata Education Society's College of Pharmacy, Nandurbar (425412), Maharashtra (India).

Photo
Ravindra Patil
Co-author

Jijamata Education Society's College of Pharmacy, Nandurbar (425412), Maharashtra (India).

Ritik Ahire*, Nikita Sonawane, Mayur Chavan, Vinod Chaure, Ravindra Patil, Analytical Review of Empagliflozin: A Sodium-Glucose Cotransporter 2 (SGLT-2) Inhibitor in the Management of Type 2 Diabetes Mellitus, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 3, 133-148. https://doi.org/10.5281/zenodo.14961123

More related articles
Cinnamon-Enhanced Topical Roll-On: A Sustainable S...
Gangasagar Shinde, Tanuja Langote, Aditya Unhale, Dr. Swati Deshm...
Comparative Review of Pharmacovigilance System in ...
Swapnil Shinde, Vyankatesh Dharanguttikar, Swapnali Dharanguttika...
The Utility Of Jayanti Veda Plant Extract Containi...
Nisha Retrekar, Deepika Bhawsar, Gaurav Agrawal, Gaurav Sarsodia,...
Pharmaceutical Validation : A Review...
Prajakta K. Ugalmugale, Vinayak M. Gaware , ...
To Study the Formulation and Evaluation of Herbal Hair Oil ...
Gajanan Patil, Nishant Patil, Aditya Pawar, Akash Arkhade, Korde S. G., ...
Related Articles
To Study Invitro Anticancer activity Brine shrimp Lethality and Anticoagulant Ac...
Kaufiya D Sayyad, Ashpak M. Tamboli, Manoj S. Patil, ...
Method Development, Validation and Forced Degradation Study of Lasmiditan by HPL...
S. Yasotha, Dr. R. Manivannan, Dr. D. Kamalakannan, Vanmathi. R. L., Gowtham T., Praveen Kumar S., ...
Cinnamon-Enhanced Topical Roll-On: A Sustainable Solution for Dysmenorrhoea and ...
Gangasagar Shinde, Tanuja Langote, Aditya Unhale, Dr. Swati Deshmukh, ...
More related articles
Cinnamon-Enhanced Topical Roll-On: A Sustainable Solution for Dysmenorrhoea and ...
Gangasagar Shinde, Tanuja Langote, Aditya Unhale, Dr. Swati Deshmukh, ...
Comparative Review of Pharmacovigilance System in Different Countries...
Swapnil Shinde, Vyankatesh Dharanguttikar, Swapnali Dharanguttikar, Parag Shinde, Pratiksha Mahajan,...
The Utility Of Jayanti Veda Plant Extract Containing Herbal Gel For Treatment Of...
Nisha Retrekar, Deepika Bhawsar, Gaurav Agrawal, Gaurav Sarsodia, ...
Cinnamon-Enhanced Topical Roll-On: A Sustainable Solution for Dysmenorrhoea and ...
Gangasagar Shinde, Tanuja Langote, Aditya Unhale, Dr. Swati Deshmukh, ...
Comparative Review of Pharmacovigilance System in Different Countries...
Swapnil Shinde, Vyankatesh Dharanguttikar, Swapnali Dharanguttikar, Parag Shinde, Pratiksha Mahajan,...
The Utility Of Jayanti Veda Plant Extract Containing Herbal Gel For Treatment Of...
Nisha Retrekar, Deepika Bhawsar, Gaurav Agrawal, Gaurav Sarsodia, ...