Archive

Abstract

Liposomes, microscopic lipid-based vesicles, represent a versatile platform in the realm of drug delivery and biomedical research. This review article provides a concise overview of liposomes, encompassing their historical evolution, structural intricacies, multifaceted applications, and recent strides in the field. Historically, Dr. Alec D. Bangham's groundbreaking work in 1961 laid the foundation for liposome research. These nanoscale structures consist of lipid bilayers, formed by amphipathic phospholipids, enveloping an aqueous core. Variations in size and lamellarity allow for tailoring liposomes to specific applications. Small Unilamellar Liposomes (SUVs), Large Unilamellar Liposomes (LUVs), and Stealth Liposomes are just a few of the types with unique attributes. Liposomes have revolutionized drug delivery. They encapsulate hydrophilic and hydrophobic compounds, enhancing drug solubility and stability. The controlled release minimizes side effects and maximizes therapeutic efficacy. Pharmaceutical formulations employ liposomes for a spectrum of drugs, including anticancer agents, antibiotics, and antifungals. Beyond drug delivery, liposomes are invaluable in biological research. They mimic cell membranes, serving as crucial tools for studying cell membrane behavior and isolating membrane proteins. They are also used for developing assays to assess various biological processes. In cosmetics and skincare, liposomes improve the penetration of active ingredients into the epidermis. Additionally, liposomes are explored as carriers for vaccines, which can enhance the immune response and vaccine effectiveness. Recent developments encompass advanced targeting mechanisms, encapsulation of multiple drugs, and drug conjugation, advancing liposomes toward multipurpose drug delivery platforms. Integration with nanotechnology, applications in immunotherapy, and a focus on biocompatible materials are indicative of the evolving landscape. While liposomes present numerous advantages, they face challenges related to stability and manufacturing complexity.

Keywords

Liposomes, Nanocarriers, SUV, LUV, MLV, Targeted drug delivery, Nanotechnology, Bioavailability

Reference

  1. Khafoor AA, Karim AS, Sajadi SM. Recent progress in the synthesis of nano-based liposomal drug delivery systems: A glance to their medicinal applications. Results in Surfaces and Interfaces. 2023 May 24:100124.
  2. M.V. Yezhelyev, X. Gao, Y. Xing, A. Al-Hajj, S. Nie, R.M. O'Rega.Emerging use of nanoparticles in diagnosis and treatment of breast cancer, the Lancet.Oncology, 7 (2006), pp. 657-667.
  3. S.K. Sahoo, V. Labhasetwar. Nanotech approaches to drug delivery and imaging.Drug Discov. Today, 8 (2003), pp. 1112-1120.
  4. C. Celia, D. Paolino, H.A. Santos. Advanced nanosystems for clinical translation. Adv. Ther., 4 (2021), p. 2000215.
  5. T. Sun, Y.S. Zhang, B. Pang, D.C. Hyun, M. Yang, Y. Xia Engineered nanoparticles for drug delivery in cancer therapy Angew. Chem., 53 (2014), pp. 12320-12364.
  6. S. Jha, P.K. Sharma, R. Malviya Liposomal drug delivery system for cancer therapy: advancement and patents. Recent Pat. Drug Deliv. Formulation, 10 (2016), pp. 177-183.
  7. Kiaie, S. H., et al. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives. International journal of pharmaceutics. 2020, 581: 119269.
  8. Shah, M. R., et al. Lipid-Based Nanocarriers for Drug Delivery and Diagnosis. William Andrew. 2017.
  9. Karaz S, Senses E. Liposomes Under Shear: Structure, Dynamics, and Drug Delivery Applications. Advanced NanoBiomed Research. 2023:2200101.
  10. Chai C, Park J. Food liposomes: Structures, components, preparations, and applications. Food Chemistry. 2023 Aug 21:137228.
  11. Pande S. Liposomes for drug delivery: review of vesicular composition, factors affecting drug release and drug loading in liposomes. Artificial Cells, Nanomedicine, and Biotechnology. 2023 Dec 31;51(1):428-40.
  12. Pal R, Pandey P, Nogai L. The Advanced Approach in The Development of Targeted Drug Delivery (TDD) With Their Bio-Medical Applications: A Descriptive Review. International Neurourology Journal. 2023 Oct 7;27(4):40-58.
  13. Sreelaya P, Bhattacharya S. A Mini-review Based on Multivesicular Liposomes: Composition, Design, Preparation, Characteristics, and Therapeutic Importance as DEPOFOAM® Technology. Current Pharmaceutical Biotechnology. 2023 Oct 1;24(12):1479-88.
  14. Hennigan K, Lavik E. Nature vs. manmade: comparing exosomes and liposomes for traumatic brain injury. The AAPS Journal. 2023 Aug 23;25(5):83.
  15. Al Badri YN, Chaw CS, Elkordy AA. Insights into asymmetric liposomes as a potential intervention for drug delivery including pulmonary nanotherapeutics. Pharmaceutics. 2023 Jan 15;15(1):294.
  16. Gabizon AA. Stealth liposomes and tumor targeting: one step further in the quest for the magic bullet. Clin Cancer Res. 2001;7:223.
  17. Romberg B, Hennink WE, Storm G. Sheddable coatings for long-circulating nanoparticles. Pharm Res. 2008;25(1):55–71. doi: 10.1007/s11095-007-9348-7.
  18. Najer A, Rifaie?Graham O, Yeow J, Adrianus C, Chami M, Stevens MM. Differences in human plasma protein interactions between various polymersomes and stealth liposomes as observed by fluorescence correlation spectroscopy. Macromolecular Bioscience. 2023 Aug;23(8):2200424.
  19. Begum MY, M. Osmani RA, Alqahtani A, Ghazwani M, Hani U, Ather H, Atiya A, Rahamathulla M, Siddiqua A. Development of stealth liposomal formulation of celecoxib: In vitro and in vivo evaluation. Plos one. 2022 Apr 26;17(4):e0264518.
  20. H. San, Z.Y. Yang, V.J. Pompili, M.L. Jaffe, G.E. Plautz, L. Xu, J.H. Felgner, C.J. Wheeler, P.L. Felgner, X. Gao Safety and short-term toxicity of a novel cationic lipid formulation for human gene therapy Hum. Gene Ther., 4 (1993), pp. 781-788.
  21. R.N. Majzoub, K.K. Ewert, C.R. Safinya Physical, E. Sciences, Cationic liposome–nucleic acid nanoparticle assemblies with applications in gene delivery and gene silencing Math. Phys. Eng. Sci., 374 (2016), p. 20150129.
  22. Nsairat H, Khater D, Odeh F, Al-Adaileh F, Al-Taher S, Jaber AM, Alshaer W, Al Bawab A, Mubarak MS. Lipid nanostructures for targeting brain cancer. Heliyon. 2021 Sep 1;7(9).F. Lai, M. Schlich, C. Sinico, A.M. Fadda, Liposomes as Brain Targeted Delivery Systems, Nanomedicines for Brain Drug Delivery, Springer2021, pp. 29-59.
  23. S.C. Semple, A. Chonn, P.R. Cullis Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo.
  24. J.S. Suk, Q. Xu, N. Kim, J. Hanes, L.M. Ensign PEGylation as a strategy for improving nanoparticle-based drug and gene delivery Adv. Drug Deliv. Rev., 99 (2016), pp. 28-51
  25. K.D. Lee, S. Nir, D. Papahadjopoulos Quantitative analysis of liposome-cell interactions in vitro: rate constants of binding and endocytosis with suspension and adherent J774 cells and human monocytes Biochemistry, 32 (1993), pp. 889-899
  26. G. Gregoriadis, D.E. Neerunjun Control of the rate of hepatic uptake and catabolism of liposome-entrapped proteins injected into rats. Possible therapeutic applications Eur. J. Biochem., 47 (1974), pp. 179-185
  27. M. Gonzalez-Rodriguez, A. Rabasco Charged liposomes as carriers to enhance the permeation through the skin Expet Opin. Drug Deliv., 8 (2011), pp. 857-871.
  28. Tseu GY, Kamaruzaman KA. A review of different types of liposomes and their advancements as a form of gene therapy treatment for breast cancer. Molecules. 2023 Feb 3;28(3):1498.
  29. Liu P, Chen G, Zhang J. A review of liposomes as a drug delivery system: current status of approved products, regulatory environments, and future perspectives. Molecules. 2022 Feb 17;27(4):1372.
  30. Nsairat H, Khater D, Sayed U, Odeh F, Al Bawab A, Alshaer W. Liposomes: Structure, composition, types, and clinical applications. Heliyon. 2022 May 1.
  31. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale research letters. 2013 Dec;8:1-9.
  32. Pradhan B, Kumar N, Saha S, Roy A. Liposome: Method of preparation, advantages, evaluation and its application. Journal of Applied Pharmaceutical Research. 2015 Nov 30;3(3):01-8.
  33. Large DE, Abdelmessih RG, Fink EA, Auguste DT. Liposome composition in drug delivery design, synthesis, characterization, and clinical application. Advanced drug delivery reviews. 2021 Sep 1;176:113851.
  34. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K. Liposome: classification, preparation, and applications. Nanoscale research letters. 2013 Dec;8:1-9.
  35. Šturm L, Poklar Ulrih N. Basic methods for preparation of liposomes and studying their interactions with different compounds, with the emphasis on polyphenols. International journal of molecular sciences. 2021 Jun 18;22(12):6547.
  36. Pradhan B, Kumar N, Saha S, Roy A. Liposome: Method of preparation, advantages, evaluation and its application. Journal of Applied Pharmaceutical Research. 2015 Nov 30;3(3):01-8.
  37. Shi NQ, Qi XR. Preparation of drug liposomes by reverse-phase evaporation. Liposome-Based Drug Delivery Systems. 2021:37-46.
  38. Szoka Jr F, Papahadjopoulos D. Comparative properties and methods of preparation of lipid vesicles (liposomes). Annual review of biophysics and bioengineering. 1980 Jun;9(1):467-508.
  39. Johnson SM, Bangham AD, Hill MW, Korn ED. Single bilayer liposomes. Biochim Biophys Acta 1971; 233: 820–826.
  40. Sawant GS, Sutar KV, Kanekar AS. Liposome: A Novel Drug Delivery System.
  41. Popovska O. An overview: methods for preparation and characterization of liposomes as drug delivery systems. International Journal of Pharmaceutical and Phytopharmacological Research. 2014 Feb 4;3(3).
  42. Angham AD, Standish MM, Watkins JC. Diffusion of univalent ions across the lamellae of swollen phospholipids. J Mol Biol 1965; 13: 238–252.
  43. Kiaie, S. H., et al. Axial pharmaceutical properties of liposome in cancer therapy: Recent advances and perspectives. International journal of pharmaceutics. 2020, 581: 119269.
  44. Has C, Sunthar P. A comprehensive review on recent preparation techniques of liposomes. Journal of liposome research. 2020 Oct 1;30(4):336-65.
  45. Szoka Jr F, Papahadjopoulos D. Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. Proceedings of the national academy of sciences. 1978 Sep;75(9):4194-8.
  46. Jaafar-Maalej C, Charcosset C, Fessi H. A new   method for liposome   preparation using  a membrane contactor.  Journal of  liposome  research. 2011 Sep 1;21(3):213-20.
  47. Vemuri S, Rhodes CT. Preparation and characterization of liposomes as therapeutic delivery systems: a review. Pharmaceutica Acta Helvetiae. 1995 Jul 1;70(2):95-111.
  48. Jiskoot W, Teerlink T, Beuvery EC, Crommelin DJ. Preparation of liposomes via detergent removal from mixed micelles by dilution: the effect of bilayer composition and process parameters on liposome characteristics. Pharmaceutisch Weekblad. 1986 Oct;8:259-65.
  49. Milsmann MH, Schwendener RA, Weder HG. The preparation of large single bilayer liposomes by a fast and controlled dialysis. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1978 Sep 11;512(1):147-55.
  50. Milsmann MH, Schwendener RA, Weder HG. The preparation of large single bilayer liposomes by a fast and controlled dialysis. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1978 Sep 11;512(1):147-55.
  51. Enoch HG, Strittmatter P. Formation and properties of 1000-A-diameter, single-bilayer phospholipid vesicles. Proceedings of the national academy of sciences. 1979 Jan;76(1):145-9.
  52. Ueno M, Tanford C, Reynolds JA. Phospholipid vesicle formation using nonionic detergents with low monomer solubility. Kinetic factors determine vesicle size and permeability. Biochemistry. 1984 Jun 1;23(13):3070-6.
  53. R.L. Shew, D.W. Deamer. D.E. Large, R.G. Abdelmessih, E.A. Fink, D.T. Auguste, A novel method for encapsulation of macromolecules in liposomes. Biochimica et Biophysica Acta (BBA)-Biomembranes. 1985 Jun 11;816(1):1-8.
  54. Mozafari MR. Liposomes: an overview of manufacturing techniques. Cellular and molecular biology letters. 2005 Jan 1;10(4):711.
  55. Mozafari MR. A new technique for the preparation of non-toxic liposomes and nanoliposomes:  the heating method. InNanoliposomes: from fundamentals to recent developments 2005 (pp. 91-98). Trafford Publishing.
  56. Gutman M. The pH Jump: Probing of Macromolecules and Solutions by a Laser?Induced, Ultrashort Proton Pulse—Theory and Applications in Biochemistry. Methods of biochemical  analysis. 1984 Apr 30:1-03.
  57. Genç R, Ortiz M, O? Sullivan CK. Curvature-tuned preparation of nanoliposomes. Langmuir. 2009 Nov 3;25(21):12604-13.
  58. Gkionis L, Aojula H, Harris LK, Tirella A. Microfluidic-assisted fabrication of phosphatidylcholine-based liposomes for controlled drug delivery of chemotherapeutics. International journal of pharmaceutics. 2021 Jul 15;604:120711.
  59. William B, Noemie P, Brigitte E, Geraldine P. Supercritical fluid methods: An alternative to conventional methods to prepare liposomes. Chemical Engineering Journal. 2020 Mar 1;383:123106.
  60. William B, Noemie P, Brigitte E, Geraldine P. Supercritical fluid methods: An alternative to conventional methods to prepare liposomes. Chemical   Engineering  Journal. 2020 Mar 1;383:123106.
  61. Liposomes with a large trapping capacity prepared by freezing and thawing of sonicated phospholipid mixtures. Archives of biochemistry  and  biophysics. 1981 Nov 1;212(1):186-94.
  62. New RR, editor. Liposomes. IRL at Oxford  University  Press; 1990.
  63. El-Nesr OH, Yahiya AS, El-Gazayerly ON. Effect of  formulation design and freeze-drying on properties of fluconazole multilamellar liposomes, Saudi Pharmaceut. J. 2010;18(4):217-24.
  64. Vadiei  K,  Perez?Soler  R,  Lopez?Bernstein  G,  Luke  DR.  Pharmacokinetic  and  pharmacodynamic    evaluation  of  liposomal cyclosporine. Int J Pharm 1989; 57: 125–131.
  65. Hwang  KJ.  Liposomes: From Biophysics to Therapeutics. New  York: Marcel Dekker Inc. 1987; 109.
  66. Torchilin V. Liposomes as targetable drug carriers. CRC Crit Rev Ther Drug Carr Syst. 1985; 2: 65-115.
  67. Gregoriadis G. Overview of liposomes. J. Antimicrob. Chemother 1991;28: 39–48. 
  68. Gregoriadis  G.  Florence  AT.  Liposomes  and  cancer  therapy.  Cancer Cells 1991; 4: 144–146.
  69. Jolck RI, Feldborg LN, Andersen S, Moghimi SM, Andresen TL.Engineering liposome and nanoparticles for biological targeting, Adv. Biochem. Eng. Biotechnol, 125, 2011, 251–280.
  70. Alving CR, Steck EA, Chapman WL, Waits VB, Hendricks LD, Therapy of  leishmaniasis, superior efficacies of  liposome encapsulated drugs, Proc. Natl. Acad. Sci. U.S.A., 75, 1978, 2959–2963.
  71. A.G. Allison, G.  Gregoriadis, Liposomes as immunological adjuvants, Nature, 252, 1974, 252.
  72. D.S.  Watson,  A.N.  Endsley,  L.  Huang,  Design considerations  for  liposomal  vaccines,  influence  of formulation  parameters  on  antibody  and  cell-mediated immune  responses  to  liposome  associated  antigens, Vaccine, 30, 2012, 2256–2272.
  73. Mahato  RI,  Rolland  A,  Tomlinson  E.  Cationic  lipid?based  gene    delivery  systems:  Pharmaceutical  perspectives.  Pharm. Res.1997; 14: 853–859.
  74. Crystal  RG.  Transfer  of  genes  to  humans:  early  lesions  and  obstacles to success. Science 1995; 270: 404–410.
  75. Witika BA, Bassey KE, Demana PH, Siwe-Noundou X, Poka MS. Current advances in specialised niosomal drug delivery: Manufacture, characterization and drug delivery applications. International Journal of Molecular Sciences. 2022 Aug 26;23(17):9668.
  76. Adepu S, Ramakrishna S. Controlled drug delivery systems: current status and future directions. Molecules. 2021 Sep 29;26(19):5905.
  77. Tewabe A, Abate A, Tamrie M, Seyfu A, Abdela Siraj E. Targeted drug delivery—from magic bullet to nanomedicine: principles, challenges, and future perspectives. Journal of Multidisciplinary Healthcare. 2021 Jul 5:1711-24.

image
Taufik Mulla
Corresponding author

Assistant Professor, Department of Pharmaceutics, Krishna School of Pharmacy & Research, affiliated with Drs. Kiran & Pallavi Patel Global University, Varnama, Vadodara, Gujarat. India

image
Heer Trivedi
Co-author

Student, Krishna School of Pharmacy & Research, affiliated with Drs. Kiran & Pallavi Patel Global University, Varnama, Vadodara, Gujarat. India

image
Sumukh Vasist
Co-author

Student, Krishna School of Pharmacy & Research, affiliated with Drs. Kiran & Pallavi Patel Global University, Varnama, Vadodara, Gujarat. India

image
Mokshi Rana
Co-author

Student, Krishna School of Pharmacy & Research, affiliated with Drs. Kiran & Pallavi Patel Global University, Varnama, Vadodara, Gujarat. India

Taufik Mulla*, Heer Trivedi, Sumukh Vasist, Mokshi Rana, Overview Of Liposomes: Versatile Nanocarriers For Drug Delivery And Beyond, Int. J. in Pharm. Sci., 2023, Vol 1, Issue 12, 226-240. https://doi.org/10.5281/zenodo.10354638

More related articles
An Overview on Artificial Blood...
Rajnandini Ahire, Mukesh Ratnaparkhi, Shital Kshirsagar, Devang M...
Formulation And In vitro Evaluation Of Bilayer Tab...
Mayur Aware, Sheetal Gondkar, Rishikesh Bachhav, ...
Gastroretentive Drug Delivery System : A Review...
Suraj Kothule, Smita Aher, Rishikesh Bachhav, ...
Bilayer Floating Tablet : A Novel Floating Tablet...
Mayur Aware, Sheetal Gondkar, Rishikesh Bachhav, ...
Related Articles
Ayurvedic Remedies of Bacterial Meningitis...
Komal Ushir, Dinesh Rishipathak, Pragati Bhosale, Manisha Raut, ...
More related articles
An Overview on Artificial Blood...
Rajnandini Ahire, Mukesh Ratnaparkhi, Shital Kshirsagar, Devang Mahale, ...
Gastroretentive Drug Delivery System : A Review...
Suraj Kothule, Smita Aher, Rishikesh Bachhav, ...
An Overview on Artificial Blood...
Rajnandini Ahire, Mukesh Ratnaparkhi, Shital Kshirsagar, Devang Mahale, ...
Gastroretentive Drug Delivery System : A Review...
Suraj Kothule, Smita Aher, Rishikesh Bachhav, ...