View Article

Abstract

Nanoparticles are a class of materials with distinctly different properties from their bulk and molecular counterparts. A critical look at the very broad topic of environmental nanoparticles.Thanks to the broad the review mainly focuses on the nature of the subject gas- mediated nanoparticles. The "life history of a nanoparticle" is presented and traced from its formation-to-formation possible use and possible fate in the environment. Sources of nanoparticles, anthropogenic emissions from industrial and work environment and transformations and generation in the atmosphere is discussed. we can to characterize and capture these nanoparticles (e.g needed in a nanoparticle production system), as well their management (emissions from industrial sources). discussed Description of the use of nanoparticles environmental technologies and potential impacts the energy sector is proposed. Possible effects to human health and the environment, as harmful as useful are important aspects to consider. As is obvious, ?Environment "nanoparticles" is a new and rapidly growing field. A lot of work there is still work to be done before we can fully exploit the benefits of nanoparticles and ensure that there are no benefits of nanoparticles. possible negative consequences. Recommendations for further work are given in each area.

Keywords

Nanotechnology, Nanoparticle, silver Coated nanoparticle

Reference

  1. Jillian F. Banfield* and Hengzhong Zhang Department of Geology and Geophysics University of Wisconsin-Madison 1215 West Dayton Street Madison, Wisconsin 53706 * Current Address: Department of Earth and Planetary Science University of California- Berkeley Berkeley, California 94720
  2. Masciangioli, T.; Zhang, W. X. Environmental Technologies at the Nanoscale; Environ. Sci. Technol. 2003, 37, 102a-108a.
  3. Colvin, V. Point of Impact: Where Technology Collides With Society, Business, and Personal Lives; Technol. Rev. 2003, 106, 71-73
  4. National Nanotechnology Initiative. Available at http://www.nano.gov/ html/facts/EHS.htm (accessed 2004)
  5. https://www.princeton.edu/news/2020/02/12/its-all-delivery-nanoparticle-platform-could- transform-medical-treatments
  6. https://www.britannica.com/science/nanoparticle
  7. https://www.geeksforgeeks.org/nanoparticles-types-production-and-uses/
  8. https://www.researchgate.net/figure/Various-carbon-based-nanomaterials-were-reported-to- induce-cytotoxicity-Carbon-nanotubes_fig1_332363054
  9. https://www.semanticscholar.org/paper/Polymer-Nanoparticle-Composites:-From- Synthesis-to-Hanemann-Szabó/c62cde4f56691091f3ef127b7710e139e671c440
  10. https://hub.jhu.edu/2018/04/04/new-nanoparticle-metallic-alloys/
  11. https://nanoall.blogspot.com/2015/04/semiconductor-nanoparticles_30.html
  12. https://ascensionsciences.com/newsroom/technical-articles/introduction-polymer- nanoparticles-drug-delivery/
  13. https://www.geeksforgeeks.org/nanoparticles-types-production-and-uses/
  14. Shinde N.C, Research Journal of Pharmaceutical, Biological and Chemical Sciences. Nanoparticles: Advances in Drug Delivery Systems,2012.
  15. Nanogloss.(2015,08).Retrievedfromhttp://nanogloss.com/nanotechnology/advantages-and- disadvantages-ofnanotechnology/#ixzz3hk6BD3SV.
  16. Yadav N, (2013, 02 05). International Journal of Applied Pharmaceutics. Solid lipid nanoparticles- A Review
  17. Rogers, K.R., et al.: Alterations in physical state of silver nanoparticles exposed to synthetic human stomach fluid. Sci. Total Environ. 420, 334–339 (2012)
  18. Alarcon, E.I., et al.: The biocompatibility and antibacterial properties of collagen-stabilized, photochemically prepared silver nanoparticles. Biomaterials 33(19), 4947–4956 (2012)
  19. Lee, P.C., Meisel, D.: Adsorption and surface-enhanced raman of dyes on silver and gold sol. J. Phys. Chem. 86, 3391–3395 (1982)
  20. Li, W., et al.: Dimers of silver nanospheres: facile synthesis and their use as hot spots for surface-enhanced raman scattering. Nano Lett. 9, 485–490 (2009)
  21.  Alvarez-Puebla, R.A., Aroca, R.F.: Synthesis of silver nanoparticles with controllable surface charge and their application to surface-enhanced raman scattering. Anal. Chem. 81, 2280– 2285 (2009)
  22. Stamplecoskie, K.G., Scaiano, J.: Optimal size of silver nanoparticles for surface-enhanced raman spectroscopy. J. Phys. Chem. C 115, 1403–1409 (2011)
  23. Marsich, L., et al.: Poly-l-lysine-coated silver nanoparticles as positively charged substrates for surface-enhanced raman scattering. Langmuir 28, 13166–13171 (2012)
  24. Li, J.M., et al.: Detecting trace melamine in solution by SERS using Ag nanoparticle coated poly(styrene-co-acrylic acid) nanospheres as novel active substrates. Langmuir 27(23), 14539–14544 (2011)
  25. Wang, B., Zhang, L., Zhou, X.: Synthesis of silver nanocubes as a SERS substrate for the determination of pesticide paraoxon and thiram. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 121, 63–69 (2014)
  26. Hornyak, G.L., et al.: Introduction to Nanosciences. CRC Press. Taylor & Francis Group, Boca Raton (2008)
  27. https://swissrotors.com/blog/8-benefits-of-zeolite-coating-with-silver-nanoparticles-in- hvac-systems/
  28. M. Niederberger and N. Pinna, Metal Oxide Nanoparticles in Organic Solvents: Synthesis, Formation, Assembly and Application (Engineering Materials and Processes), Springer, Berlin, Germnay, 2009.
  29. A. Feinle, M. S. Elsaesser, and N. H¨using, ?Sol-gel synthesis of monolithic materials with hierarchical porosity,? Chemical Society Reviews, vol. 45, no. 12, pp. 3377–3399, 2016.
  30. Y.  Liao,  Y.  Xu,  and  Y.  Chan,  ?Semiconductor  nanocrystals  in  sol-gel  derived  matrices,? Physical Chemistry Chemical Physics, vol. 15, no. 33, Article ID 13704, 2013.
  31. G.  J.  Owens,  R.  K.  Singh,  F.  Foroutan  et  al.,  ?Sol-gel  based  materials  for  biomedical applications,? Progress in Materials Science, vol. 77, pp. 1–79, 2016.
  32. M. Haruta, ?Nanoparticulate gold catalysts for low-temperature CO oxidation,? Journal of New Materials for Electrochemical Systems, vol. 7, pp. 163–172, 2004
  33. N. Tian, Z. Y. Zhou, S. G. Sun, Y. Ding, and Z. L. Wang, ?Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity,? Science, vol. 316, no. 5825, pp. 732–735, 2007.
  34. R.  Xu,  D.  Wang,  J.  Zhang,  and  Y.  Li,  ?Shape-dependent  catalytic  activity  of  silver nanoparticles for the oxidation of styrene,? Chemistry - An Asian Journal, vol. 1, no. 6, pp. 888–893, 2006.
  35. I.  A.  Rahman  and  V.  Padavettan,  ?Synthesis  of  silica  nanoparticles  by  sol-gel:  size- dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review,? Journal of Nanomaterials, vol. 2012, Article ID 132424, 15 pages, 2012.
  36. F. Adam, T. S. Chew, and J. Andas, ?A simple template-free sol-gel synthesis of spherical nanosilica from agricultural biomass,? Journal of Sol-Gel Science and Technology, vol. 59, no. 3, pp. 580–583, 2011.
  37. M. Catauro, E. Tranquillo, G. D. Poggetto, M. Pasquali, A. Dell’Era, and S. C. Vecchio,?Influence  of  the  heat  treatment  on  the  particles  size  and  on  the  crystalline  phase  of  TiO2 synthesized by the sol-gel method,? Materials, vol.no.  12,  2018.  [11] 
  38. S.  Gupta  and  M.  Tripathi,  ?A  review  on  the  synthesis  of  TiO2 nanoparticles by solution route,? Open Chemistry, vol. 10, no. 2, pp. 279–294, 2012.
  39. Q. Zhong, J. Yang, K. Shi, S. Zhong, L. Zhixiong, and S. M. Angel, ?Event-triggered H? load frequency control for multi-area nonlinear power systems based on non-fragile proportional integral control strategy,? IEEE Transactions on Intelligent Transportation Systems, 2021, doi. 10.1109/ TITS.2021.3110759.
  40. P. Wang, S. Z. Wang, Y. R. Kang et al., ?Cauliflower-shaped Bi2O3-ZnO heterojunction with superior sensing performance towards ethanol,? Journal of Alloys and Compounds, vol. 854, Article ID 157152, 2021.
  41. L. Jiang, Y. Wang, X. Wang et al., ?Electrohydrodynamic printing of a dielectric elastomer actuator and its application in tunable lenses,? Composites Part A: Applied Science and Manufacturing, vol. 147, Article ID 106461, 2021.
  42. M. Wang, C. Jiang, S. Zhang, X. Song, Y. Tang, and H. M. Cheng, ?Reversible calcium alloying enables a practical room-temperature rechargeable calcium-ion battery with a high discharge voltage,? Nature Chemistry, vol. 10, no. 6, pp. 667–672, 2018.
  43. X.  Zhang,  Y.  Tang,  F.  Zhang,  and  C.  S.  Lee,  ?A  novel  aluminum-graphite  dual-ion battery,? Advanced energy materials, vol. 6, no. 11, Article ID 1502588, 2016. [142] R. Chen,Y.  Cheng,  P.  Wang  et  al.,  ?Facile  synthesis  of  a  sandwiched  Ti3C2Tx  MXene/nZVI/fungal hypha nanofiber hybrid membrane for enhanced removal of Be(II) from Be(NH) complexing solutions,? Chemical Engineering Journal, vol. 421, Lausanne, Switzerland, Article ID 129682, 2021.
  44. X.  Ji,  C.  Hou,  Y.  Gao,  Y.  Xue,  Y.  Yan,  and  X.  Guo,  ?Metagenomic  analysis  of  gut microbiota modulatory effects of jujube (Ziziphus jujuba Mill.) polysaccharides in a colorectal cancer mouse model,? Food & Function, vol. 11, no. 1, pp. 163–173, 2020.
  45. S.  Salimian,  A.  Zadhoush,  M.  Naeimirad,  R.  Kotek,  and  S.  Ramakrishna,  ?A  review  on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites,? Polymer Composites, vol. 39, no. 10, pp. 3383–3408, 2018.
  46. A. M. Lamy, R. F. Silva, and L. Durães, ?Advances in carbon nanostructure-silica aerogel composites: a review,? Journal of Materials Chemistry, vol. 6, no. 4, pp. 1340–1369, 2018.
  47. A. V. Rao and D. Haranath, ?Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels,? Microporous and Mesoporous Materials, vol. 30, no. 2-3, pp. 267–273, 1999.
  48. M. Rohaniyan,   A.   Davoodnia,   S.   A.   Beyramabadi,   and   A.   Khojastehnezhad,?Phosphomolybdic acid  supported on Schiff base functionalized  graphene oxide nanosheets: preparation, characterization, and first catalytic application in the multi-component synthesis of tetrahydrobenzo[ a ] xanthene-11-ones,? Applied Organometallic Chemistry, vol. 33, no. 5, Article ID e4881, 2019.
  49. M. Khayatnezhad and F. Nasehi, ?Industrial pesticides and a methods assessment for the reduction of associated risks: a Review,? Advancements in Life Sciences, vol. 8, no. 2, pp. 202–210, 2021. [146] Y. P. Xu, P. Ouyang, S. M. Xing, L. Y. Qi, M. khayatnezhad, and H. Jafari, ?Optimal structure design of a PV/FC HRES using amended Water Strider Algorithm,? Energy Report, vol. 7, pp. 2057–2067, 2021.
  50. S. Hutapea, S. A. S. Ghazi, T. C. Chen et al., ?Study on food preservation materials based on nano-particle reagents,? Food Science and Technology, 2021, doi. 10.1590/fst.39721.
  51. https://ebrary.net/182712/engineering/method
  52. E. Cuce, M. C. Pinar, P. M. Cuce, C. J. Wood, and S. B. Riffat, ?Toward aerogel based thermal superinsulation in buildings: a comprehensive review,? Renewable and Sustainable Energy Reviews, vol. 34, pp. 273–299, 2014.
  53. S.  B.  Riffat  and  G.  Qiu,  ?A  review  of  state-of-the-art  aerogel  applications  in  buildings,? International Journal of Low Carbon Technologies, vol. 8, no. 1, pp. 1–6, 201
  54. D. W. Schaefer and K. D. Keefer, ?Structure of random porous materials: silica aerogel,? Physical Review Letters, vol. 56, no. 20, pp. 2199–2202, 1986.
  55. L. W. Hrubesh, ?Aerogel applications,? Journal of Noncrystalline Solids, vol. 225, pp. 335– 342, 1998.
  56. S. Salimian, A. Zadhoush, M. Naeimirad,  R. Kotek, and  S. Ramakrishna, ?A  review on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites,? Polymer Composites, vol. 39, no. 10, pp. 3383–3408, 2018.
  57. A. M. Lamy, R. F. Silva, and L. Durães, ?Advances in carbon nanostructure-silica aerogel composites: a review,? Journal of Materials Chemistry, vol. 6, no. 4, pp. 1340–1369, 2018
  58. A. V. Rao and D. Haranath, ?Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels,? Microporous and Mesoporous Materials, vol. 30, no. 2-3, pp. 267–273, 1999.
  59. A. C. Pierre and G. M. Pajonk, ?Chemistry of aerogels and their applications,? Chemical Reviews, vol. 102, no. 11, pp. 4243–4266, 2002.
  60. A. Surendar, S. Ghazi, N. A. Alekhina et al., ?Synthesis of NiO nanoparticles and sulfur, and nitrogen co doped graphene quantum dots/NiO nanocomposites for antibacterial application,? Journal of Nanostructures, vol. 11, no. 1, pp. 181–188, 2021.
  61. N.  Ngafwan,  H.  Rasyid,  E.  S.  Abood  et  al.,  ?Study  on  Novel  Fluorescent  Carbon Nanomaterials in Food Analysis,? Food Science and Technology, 2021, doi. 10.1590/fst.37821.
  62. M. N. Shalaby, ?.e effect of whey protein (natural nanoparticle) on muscle strength, GH, IGF, T. Protein and body composition,? International Journal of Pharmaceutical Research and Allied Sciences, vol. 7, no. 1, 2018.
  63. E. Cuce, M. C. Pinar, P. M. Cuce, C. J. Wood, and S. B. Riffat, ?Toward aerogel based thermal superinsulation in buildings: a comprehensive review,? Renewable and Sustainable Energy Reviews, vol. 34, pp. 273–299, 2014.
  64. B.  Riffat  and  G.  Qiu,  ?A  review  of  state-of-the-art  aerogel  applications  in  buildings,? International Journal of Low Carbon Technologies, vol. 8, no. 1, pp. 1–6, 2012.
  65. D. W. Schaefer and K. D. Keefer, ?Structure of random porous materials: silica aerogel,? Physical Review Letters, vol. 56, no. 20, pp. 2199–2202, 1986.
  66. L. W. Hrubesh, ?Aerogel applications,? Journal of Noncrystalline Solids, vol. 225, pp. 335– 342, 1998.
  67. S.  Salimian,  A.  Zadhoush,  M.  Naeimirad,  R.  Kotek,  and  S.  Ramakrishna,  ?A  review  on aerogel: 3D nanoporous structured fillers in polymer-based nanocomposites,? Polymer Composites, vol. 39, no. 10, pp. 3383–3408, 2018.
  68. A. M. Lamy, R. F. Silva, and L. Durães, ?Advances in carbon nanostructure-silica aerogel composites: a review,? Journal of Materials Chemistry, vol. 6, no. 4, pp. 1340–1369, 2018
  69. A. V. Rao and D. Haranath, ?Effect of methyltrimethoxysilane as a synthesis component on the hydrophobicity and some physical properties of silica aerogels,? Microporous and Mesoporous Materials, vol. 30, no. 2-3, pp. 267–273, 1999.
  70. A. C. Pierre and G. M. Pajonk, ?Chemistry of aerogels and their applications,? Chemical Reviews, vol. 102, no. 11, pp. 4243–4266, 2002.
  71. M. N. Shalaby, ?Effects of protein hydrolysates on physical performance and immunity in male soccer players,? 4e International Scientific Journal of Physical Education and Sport Sciences, vol. 2, no. 2, pp. 1–8, 2015.
  72. M. N. Shalaby, M. M. Sakoury, M. A. Kholif, and N. I. Alsayed, ?.e role of Amino Acids in improving immunity and growth factors of Volleyball players,? J Adv Pharm Educ Res Oct- Dec, vol. 10, no. 4, 2020.
  73. M.  B.  Aimaq  and  S.  M.  Salehy,  ?Determining  and  detection  of  chemical  and  mineral composition of gypsum obtained from Karkar-Doodkas, Baghlan province,? International Journal of Innovative Research and Scientific Studies, vol. 3, no. 3, pp. 93–97, 2020.
  74. Dmitry Bokov , 1 Abduladheem Turki Jalil , 2,3 Supat Chupradit , 4 Wanich Suksatan , 5 Mohammad Javed Ansari,6 Iman H. Shewael,7 Gabdrakhman H. Valiev,8 and Ehsan Kianfar 9,10 Received 19 September 2021; Revised 23 October 2021; Accepted 12 November 2021; Published 24 December 2021
  75. Dmitry Bokov , 1 Abduladheem Turki Jalil , 2,3 Supat Chupradit , 4 Wanich Suksatan , 5 Mohammad Javed Ansari,6 Iman H. Shewael,7 Gabdrakhman H. Valiev,8 and Ehsan Kianfar 9,10 Received 19 September 2021; Revised 23 October 2021; Accepted 12 November 2021; Published 24 December 2021
  76. Konrad ,A., Herr, U., Tidecks, R. and Samwer, F.,(2001) " Luminescence of bulk and nanocrystalline cubic yttria" J. of Appl. Phys., vol. 90(7) , pp3516-3523.
  77. Rostislav, A. Andrievskii (1994) " The synthesis and properties of nanocrystalline refractory compounds" Russ. Chem. Rev., vol.63, pp411-427.
  78. Sharma, A.B., Sharma, M. and Pandey,R.K., (2009) " Synthesis, Properties and Potential Applications of Semiconductor Quantum Particles" Asian Journal of Chemistry, vol.21(10) , ppS033-038
  79. https://www.researchgate.net/figure/High-energy-ball-milling-and-sintering-Redrawn- from-59_fig3_333539635
  80. R.L. Eisenberg, Radiology: An Illustrated History, Mosby Year Book, 1992.
  81. R.F. Mould, Pierre Curie, 1859–1906, Curr. Oncol. 14 (2007) 74–82, https://doi. org/10.3747/co.2007.110
  82. R.L. Eisenberg, Radiology: An Illustrated History, Mosby Year Book, 1992. [21] R.F. Mould, Pierre Curie, 1859–1906, Curr. Oncol. 14 (2007) 74–82, https://doi. org/10.3747/co.2007.110
  83. S.G. Kwon, T. Hyeon, Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides, Acc. Chem. Res. 41 (12) (2008) 1696–1709, https://doi.org/10.1021/ar8000537.
  84. S.G. Kwon, T. Hyeon, Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides, Acc. Chem. Res. 41 (12) (2008) 1696–1709, https://doi.org/10.1021/ar8000537.
  85. J. Park, J. Joo, S. Kwon, Y. Jang, T. Hyeon, Synthesis of monodisperse spherical nanocrystals, Angew. Chemie Int. Ed. 46 (25) (2007) 4630–4660.
  86. T. Hyeon, Chemical synthesis of magnetic nanoparticles, Chem. Commun. (2003) 927– 934, https://doi.org/10.1039/B207789B.
  87. Y.-W. Jun, J.-S. Choi, J. Cheon, Heterostructured magnetic nanoparticles: their versatility and high-performance capabilities, Chem. Commun. (12) (2007) 1203–1214, https://doi.org/10.1039/B614735F.
  88. Y.-W. Jun, J.-S. Choi, J. Cheon, Shape control of semiconductor and metal oxide nanocrystals through nonhydrolytic colloidal routes, Angew. Chemie Int. Ed. 45 (21) (2006) 3414–3439.
  89. A.-H. Lu, E.L. Salabas, F. Schüth, Magnetic nanoparticles: synthesis, protection, functionalization, and application, Angew. Chemie Int. Ed. 46 (8) (2007) 1222–1244, https://doi.org/10.1002/anie.200602866.
  90. T. Prasad Yadav, R. Manohar Yadav, D. Pratap Singh, Mechanical milling: a top down approach for the synthesis of nanomaterials and nanocomposites, Nanosci. Nanotechnol. 2 (3) (2012) 22–48, https://doi.org/10.5923/j.nn.20120203.01.
  91. S. Anu Mary Ealia, M.P. Saravanakumar, A review on the classification, characterisation, synthesis of nanoparticles and their application, IOP Conf, Ser. Mater. Sci. Eng. 263 (2017) 032019, https://doi.org/10.1088/1757-899X/263/ 3/032019.
  92. N. Baig, I. Kammakakam, W. Falath, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, Mater. Adv. 2 (6) (2021) 1821–1871, https://doi.org/10.1039/D0MA00807A.
  93. L.-C. Xu, C.A. Siedlecki, 4.18 Surface Texturing and Control of Bacterial Adhesion, in: P.B.T.-C.B.I.I. Ducheyne (Ed.), Compr. Biomater. II, Elsevier, Oxford, 2017: pp. 303–320.https://doi.org/10.1016/B978-0-12-803581- 8.09295-X
  94. https://nanosfun.com/rushmore_event/new-paper-in-ultrasonics-sonochemistry-exfoliated- 2d-layers-with-her-electrocatalytic-activity/
  95. V. Amendola, M. Meneghetti, Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles, Phys. Chem. Chem. Phys. 11 (2009) 3805–3821, https://doi.org/10.1039/B900654K.
  96. M. Kim, S. Osone, T. Kim, H. Higashi, T. Seto, Synthesis of nanoparticles by laser ablation: a review, KONA            Powder            Part. J. 34 (2017) 80–90.https://doi.org/10.14356/kona.2017009.
  97. S.-J. Park, Y.-J. Kim, S.-J. Park, Size-dependent shape evolution of silica nanoparticles into hollow structures, Langmuir 24 (21) (2008) 12134–12137, https://doi.org/10.1021/la8028885.
  98. R. Asmatulu, 14 - Nanocoatings for corrosion protection of aerospace alloys, in: V. S. Saji, R.B.T.-C.P. and C.U.N. Cook (Eds.), Corros. Prot. Control Using Nanomater., Woodhead Publishing, 2012: pp. 357–374. https://doi.org/https:// doi.org/10.1533/9780857095800.2.357.
  99. S.-Z. Qiao, J. Liu, G.Q. Max Lu, Chapter 21 - Synthetic Chemistry of Nanomaterials, in:R. Xu, Y.B.T.-M.I.S.C. (Second E. Xu (Eds.), Mod. Inorg. Synth. Chem. (Second Ed., Elsevier, Amsterdam, 2017: pp. 613–640. https://doi.org/ 10.1016/B978-0-444-63591- 4.00021-5.
  100. C.Y. Tai, C.-T. Tai, M.-H. Chang, H.-S. Liu, Synthesis of magnesium hydroxide and oxide nanoparticles using a spinning disk reactor, Ind. Eng. Chem. Res. 46 (17) (2007) 5536–5541, https://doi.org/10.1021/ie060869b.
  101. M. Parashar, V.K. Shukla, R. Singh, Metal oxides nanoparticles via sol–gel method: a review on synthesis, characterization and applications, J. Mater. Sci. Mater. Electron. 31 (5) (2020) 3729–3749, https://doi.org/10.1007/s10854-020- 02994-8.
  102. S. Mohammadi, A. Harvey, K.V.K. Boodhoo, Synthesis of TiO2 nanoparticles in a spinning disc reactor, Chem. Eng. J. 258 (2014) 171–184, https://doi.org/ 10.1016/j.cej.2014.07.042.
  103. S. Bhaviripudi, E. Mile, S.A. Steiner, A.T. Zare, M.S. Dresselhaus, A.M. Belcher, J. Kong, CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts, J. Am. Chem. Soc. 129 (6) (2007) 1516–1517, https://doi.org/10.1021/ja067333210.1021/ja0673332.s001.
  104. H. Ago, CVD Growth of High-Quality Single-Layer Graphene, in: K. Matsumoto (Ed.), Front.       Graphene        Carbon Nanotub.,       Springer,         Tokyo,   2015:   pp3–20. https://doi.org/10.1007/978-4-431-55372-4_1.
  105. M. Adachi, S. Tsukui, K. Okuyama, Nanoparticle synthesis by ionizing source gas in chemical vapor deposition, Jpn. J. Appl. Phys. 42 (2003) L77–L79, https://doi. org/10.1143/JJAP.42.L77.
  106. O. V. Singh, ed., Bio-Nanoparticles: Biosynthesis and Sustainable Biotechnological Implications, John Wiley & Sons, Ltd, 2015. https://doi.org/ 10.1002/9781118677629.
  107. S. He, Z. Guo, Y.u. Zhang, S. Zhang, J. Wang, N. Gu, Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata, Mater. Lett. 61 (18) (2007) 3984–3987, https://doi.org/10.1016/j.matlet.2007.01.018.
  108. A. Ahmad, P. Mukherjee, S. Senapati, D. Mandal, M.I. Khan, R. Kumar, M. Sastry, Extracellular biosynthesis of silver nanoparticles using the fungus Fusarium oxysporum, Colloids Surf B Biointerfaces 28 (4) (2003) 313–318, https://doi.org/ 10.1016/S0927- 7765(02)00174-1.
  109. J.D. Oxley, T. Prozorov, K.S. Suslick, Sonochemistry and sonoluminescence of room- temperature ionic liquids, J. Am. Chem. Soc. 125 (37) (2003) 11138–11139, https://doi.org/10.1021/ja029830y.
  110. M.B. Muradov, O.O. Balayeva, A.A. Azizov, A.M. Maharramov, L.R. Qahramanli, G.M. Eyvazova, Z.A. Aghamaliyev, Synthesis and characterization of cobalt sulfide nanoparticles by sonochemical method, Infrared Phys. Technol. 89 (2018) 255–262, https://doi.org/10.1016/j.infrared.2018.01.014.
  111. C.U. Okoli, K.A. Kuttiyiel, J. Cole, J. McCutchen, H. Tawfik, R.R. Adzic, D. Mahajan, Solvent effect in sonochemical synthesis of metal-alloy nanoparticles for use as electrocatalysts, Ultrason. Sonochem. 41 (2018) 427–434, https://doi. org/10.1016/j.ultsonch.2017.09.049.
  112. S. Santibenchakul, P. Sirijaturaporn, W. Mekprasart, W. Pechrapa, Ga-doped ZnO nanoparticles synthesized by sonochemical-assisted process, Mater. Today Proc. 5 (6) (2018) 13865–13869, https://doi.org/10.1016/j.matpr.2018.02.030
  113. M. Panahi-Kalamuei, M. Mousavi-Kamazani, M. Salavati-Niasari, S. M. Hosseinpour- Mashkani, A simple sonochemical approach for synthesis of selenium nanostructures and investigation of its light harvesting application, Ultrason. Sonochem. 23 (2015) 246–256, https://doi.org/10.1016/j. ultsonch.2014.09.006
  114. M. Mahdiani, F. Soofivand, M. Salavati-Niasari, Investigation of experimental andinstrumental parameters on properties of PbFe12O19 nanostructures prepared by sonochemical method, Ultrason. Sonochem. 40 (2018) 271–281, https://doi.org/ 10.1016/j.ultsonch.2017.06.023
  115. T. Dietl, H. Ohno and F. Matsukura, ?Hole-Mediated Ferromagnetism in Tetrahedrally Coordinated Semiconductors,? Physical Review B, Vol. 63, 2001, Article ID: 195205. doi:10.1103/PhysRevB.63.195205
  116. D.  Chakraborti,  G.  R.  Trichy,  J.  T.  Prater  and  J.  Narayan,  ?The  Effect  of  Oxygen Annealing on ZnO:Cu and ZnO: (Cu, Al) Diluted Magnetic Semiconductors,? Journal of Physics D: Applied Physics, Vol. 40, No. 24, 2007, p. 7606. doi:10.1088/0022-3727/40/24/002
  117. S. Venkataraj, N. Ohash1, I. Sakaguchi, Y. Adachi, T. Ohgaki, H. Ryoken and H. Haneda,?Structural  and  Magnetic  Properties  of  Mn-Ion  Implanted  ZnO  Films,?  Journal  of  Applied Physics, Vol. 102, No. 1, 2007, Article ID: 014905. doi:10.1063/1.2752123
  118. S.-J. Han, J. W. Song, C.-H. Yang, S. H. Park, J.-H. Park, Y. H. Jeong and K. W. Rhie, ?A Key to Room-Temperature Ferromagnetism in Fe-Doped ZnO:Cu,? Applied Physics Letters, Vol. 81, No. 22, 2002, pp. 4212-4214. doi:10.1063/1.1525885
  119. K. Ueda, H. Tabata and T. Kawai, ?Magnetic and Electric Properties of Transition-Metal- Doped ZnO Films,? Applied Physics Letters, Vol. 79, No. 7, 2001, pp. 988-990. doi:10.1063/1.1384478
  120. T.  Wakano,  N.  Fujimura,  Y.  Morinaga,  N.  Abe,  A.  Ashida  and  T.  Ito,  ?Magnetic  and Magneto-Transport Properties of ZnO:Ni Films,? Physica E: Low-Dimensional Systems and Nanostructures, Vol. 10, No. 1-3, 2001, pp. 260-264. doi:10.1016/S1386-9477(01)00095-9
  121. S. J. Han, T. H. Jang, Y. B. Kim, B. G. Park, J. H. Park and Y. H. Jeong, ?Magnetism in Mn-Doped ZnO Bulk Samples Prepared by Solid State Reaction,? Applied Physics Letters, Vol. 83, No. 5, 2003, pp. 920-922. doi:10.1063/1.1597414
  122. D. C. Kundaliya, S. B. Ogale, S. E. Lofland, S. Dhar, C. J. Metting, S. R. Shinde, Z. Ma,B. Varughese, K. V. Ramanujachari, L. Salamanca-Riba and T. Venkatesan, ?On the Origin of High-Temperature Ferromagnetism in the Low-Temperature-Processed Mn-Zn-O \] System,? Nature Matter, Vol. 3, No. 10, 2004, pp. 709-714. doi:10.1038/nmat1221
  123. https://thefactfactor.com/tag/ageing-of-colloids/
  124. U. Ilyas, R. S. Rawat, T. L. Tan, P. Lee, R. Chen, H. D. Sun, F. J. Li and S. Zhang,?Enhanced  Indirect  Ferromagnetic  p-d  Exchange  Coupling  of  Mn  in  Oxygen  Rich  ZnO:Mn Nanoparticles Synthesized by Wet Chemical Method,? Journal of Applied Physics, Vol. 111, No. 3, 2012, Article ID: 033503. doi:10.1063/1.3679129

Photo
ABHIJEET SURESH JADHAV
Corresponding author

LATE BHAGIRATHI YASHWANTRAO PATHRIKAR COLLAGE OF PHARMACY PATHRI

Photo
Nakul kathar
Co-author

LATE BHAGIRATHI YASHWANTRAO PATHRIKAR COLLAGE OF PHARMACY PATHRI

Photo
Dr. Gajanan sanap
Co-author

LATE BHAGIRATHI YASHWANTRAO PATHRIKAR COLLAGE OF PHARMACY PATHRI

Jadhav Abhijeet*, Nakul Kathar, Gajanan Sanap, A Systematic Review Preparation of Nanoparticle, Int. J. in Pharm. Sci., 2023, Vol 1, Issue 12, 504-523. https://doi.org/ 10.5281/zenodo.10405194

More related articles
Review Of Monkeypox Virus :Symptoms ,Pathogenesis ...
Pratiksha A. Udawant, Sabafarin Shaikh, Khare Komal, Mayur S. Bho...
Formulation And Evaluation of Mucoadhesive Buccal ...
Sudhir Kumar, Gunjan Rani, Sourabh Sharma, ...
Antioxidant And Acetylycholinestrase Inhibitory Po...
Ruchi Solanki, Prof. Vijay Juyal, ...
NSAID Induced Acute Kidney Injury (AKI): A Case Study...
Dhanya Dharman, Adithya S. L., Swaminath G. Iyer, Neehar M. Shanavas, Shaiju S. Dharan, ...
The Phytochemical And Pharmacological Review Article Of Fig Tree (Ficus Carica)...
Shaikh Mohammadsaad A., Patel Munavvar Y., Shaikh Umed K., Shaikh Rayyan J., Quazi Majaz , Aejaz Ahm...
Review On Self Micro Emulsifying Drug Delivery System SMEDDS...
Jadhav Bharat V., Tattu Arpita B., Jadhav Supriya B., Bade urmila R., ...
Related Articles
Tinospora Cordifolia – As An Anticancer Agent: Recent And Advance Study...
Arpita R. Pawar, Ashwini T. Chougule, Jaya R. Kamble, Pritam Salokhe, Nilesh B. Chougule, ...
Pharmacognostical, Phytochemical Characterisation and Formulative Study of Trich...
S. Jasbin Nisha, Abish Mobin M., Deepthi Dileep, Thomas R., Daniel Xavier Prasad, Surabhi G. S., Pra...
To Study Antioxidant and Anticancer activity of aqueous extract of Onion peels, ...
Sushant Mane, Sangram Falake, Somnath Mali, Dr. Ashpak Tamboli, ...
Review Of Monkeypox Virus :Symptoms ,Pathogenesis ,Diagnosis And Treatment...
Pratiksha A. Udawant, Sabafarin Shaikh, Khare Komal, Mayur S. Bhosle, Sushmita Chavan, ...
More related articles
Review Of Monkeypox Virus :Symptoms ,Pathogenesis ,Diagnosis And Treatment...
Pratiksha A. Udawant, Sabafarin Shaikh, Khare Komal, Mayur S. Bhosle, Sushmita Chavan, ...