View Article

Abstract

Lung tumour is prevalent malignancies in population, with (EGFR) serving as critical therapeutic agent as its treatment due to its pivotal role in tumour progression and survival. The present study hypothesises that 5-(4-bromophenyl)-N-ethyl-1,3,4-thiadiazol-2-amine derivatives exhibit significant binding affinities toward EGFR, thereby representing potential anti-cancer agents. These studies we have Designed thiadiazole analogues gone through “Lipinski's rule of 5”, vebers rule, ADMET screening, drug-likeness. The molecular Docking was conducted via PyRx software to evaluate binding interactions of the synthesised derivatives with EGFR kinase domain. We performed the comparative study of docking between the designed thadiazole derivative and standard anticancer drug erlotinib. We conclude that 26 out of 33 molecule follows Lipinski’s rule of five with zero violation, also all compounds successfully passed toxicity assessment. The docking result conclude that the compound SP22, SP23, SP24, SP25, SP26, SP28, SP29, SP30, SP32 and SP33exhibited highest docking score as compared to standard anticancer drug erlotinib targeting EGFR kinase. Hence these molecules are selected for future synthesis. This study highlights the potential of thiadiazole-based scaffolds in anti-cancer drug design.

Keywords

Lung cancer, EGFR, Thiadiazole derivative, molecular docking.

Introduction

Tumour remains threat and life-threatening concerns. Among its various types, lung cancer stands out as particularly deadly. Kinases, a class of enzymes responsible for transferring phosphate groups, play a pivotal role in numerous cellular functions. Among these, cytoplasmic tyrosine kinases are crucial for transmitting external signals into the cell and are often associated with oncogenic processes. As a result, developing inhibitors that specifically target tyrosine kinases is critically important in cancer treatment [1-3].

The development of several strong and TKIs, past 20 years has advanced our knowledge. A molecular target for certain possible cancer treatments has been found to be EGFR. Thirteen secreted polypeptide ligands and EGFR family [4-5].

To address these challenges, extensive research has been conducted to design innovative EGFR inhibitors with enhanced selectivity and efficacy. Among the different chemical frameworks studied, thiadiazole derivatives have shown great promise as biological properties. Modifications such as halogenation and N-methylation have been found to significantly improve their pharmacological activity, particularly against kinases like EGFR[6-8].

In Present study we have to performed computational methodologies. It plays vital role in drug discovery and to minimize the risk of toxicity. In this study, we propose that 5-(4-bromophenyl)-N-ethyl-1, 3, 4-thiadiazol-2-amine derivatives exhibit strong EGFR inhibitory activity through specific interactions within the kinase domain. Molecular docking analysis was employed to evaluate their binding affinities, interaction mechanisms, and structural features. This research aims to identify novel and selective EGFR inhibitors, contributing to the advancement of targeted lung cancer therapies [9].

The standard anticancer drug erlotinib, a tyrosine kinase inhibitor used in the treatment of non-small cell lung cancer and pancreatic cancer, was used for a comparative study with thiadiazole derivatives. The study was conducted based on their binding affinity to the EGFR kinase protein, a key target in cancer therapy[10

MATERIAL AND METHODS

Designing of 5-(4-bromophenyl)-N-ethyl-1, 3, 4-thiadiazole-2-amine derivatives

The reaction was achieved by ethyl 4-bromobenzoate react with hydrazine hydrochloride (NH2 NH2.HCL) in ethanol under reflux condition to form 4bromobenzohydrazide.  Further 4bromobenzohydrazide treated with thiocyanate in ethanol under reflux condition to give 2-[(4-bromophenyl) carbonyl]-N-ethylhydrazinecarbothioamide, further 2-[(4-bromophenyl) carbonyl]-N-ethylhydrazinecarbothioamide is react with concentrated sulphuric acid (H2SO4) with continuous stirring to form 5(4-bromophenyl)-N-ethyl-1,3,4-thiadiazole-2-amine derivatives.

Design scheme: Synthesis of 5-(4-bromophenyl)-N-ethyl-1, 3, 4-thiadiazol-2-amine   

Pharmacokinetic and toxicity prediction of designed derivatives

Drug discovery and development heavily relies on chemical ADMET. Also being sufficiently effective against target, drug candidate should have suitable ADMET characteristics at therapeutic dosage. The ADME analysis, drug-likeness, and toxicity parameters of the proposed compounds were evaluated. Swiss ADME servers were used to examine the pharmacokinetic (ADME) properties of proposed derivatives as well as the Lipinski rule of five. ProTox-II has been used to forecast the chemicals' toxicity [11-12].

Molecular Docking

Binding of analogue in active areas of crystal structures of EGFR kinase (T790M/L858R) (PDB DOIhttps://doi.org/10.2210/pdb5EDP/pdb) were investigated utilising an in-silico process, which were obtained from www.pdb.org, the Protein Data Bank service. All compound performed docking by PyRx 0.8. Discovery Studio Visualizer (version19) was used to protein preparation. 3D (X= -60.135585, Y= -7.649423, Z= -25.673) was for used to perform docking. BIOVIA Visualizer gave binding information [13].

RESULT AND DISCUSSION

All compounds having bioavailability evaluated by using “Lipinski's rule of five” for oral route (Table 2). Pharmacokinetics parameter & drug-likeness properties of compounds are examined by swissADME software (Table 3). The “acute toxicity has been predicted along with LD50 (mg/kg)” by ProTox-II (Table 4). The PyRx software (0.8 version) of molecular docking to produce “active Amino acid residues, bond length, category, type, ligand energies, and scores” of compounds [14-15]. The Comparative study was performed by using standard anticancer drug (Erlotinib) with binding protein EGFR kinase (Table 5-6).

Table 1: Structure, IUPAC name and Molecular formula

Comp.Code

Structure

IUPAC Name

M.F

SP1

5-(4-bromophenyl)-N-ethyl-1,3,4-thiadiazol-2-amine

 

C10H10BrN3S

SP2

5-(4-bromophenyl)-N-propyl-1,3,4-thiadiazol-2-amine

 

C11H12BrN3S

SP3

5-(4-bromophenyl)-N-(propan-2-yl)-1,3,4-thiadiazol-2-amine

 

C11H12BrN3S

SP4

5-(4-bromophenyl)-N-butyl-1,3,4-thiadiazol-2-amine

 

C12H14BrN3S

SP5

5-(4-bromophenyl)-N-(2-methylpropyl)-1,3,4-thiadiazol-2-amine

 

C12H14BrN3S

SP6

5-(4-bromophenyl)-N-(butan-2-yl)-1,3,4-thiadiazol-2-amine

 

C12H14BrN3S

SP7

5-(4-bromophenyl)-N-tert-butyl-1,3,4-thiadiazol-2-amine

 

C12H14BrN3S

SP8

5-(4-bromophenyl)-N-pentyl-1,3,4-thiadiazol-2-amine

 

C13H16BrN3S

SP9

5-(4-bromophenyl)-N-(3-methylbutyl)-1,3,4-thiadiazol-2-amine

C13H16BrN3S

SP10

5-(4-bromophenyl)-N-(2,2-dimethylpropyl)-1,3,4-thiadiazol-2-amine

 

C13H16BrN3S

SP11

5-(4-bromophenyl)-N-hexyl-1,3,4-thiadiazol-2-amine

 

C14H18BrN3S

SP12

5-(4-bromophenyl)-N-heptyl-1,3,4-thiadiazol-2-amine

 

C15H20BrN3S

SP13

5-(4-bromophenyl)-N-octyl-1,3,4-thiadiazol-2-amine

 

C16H22BrN3S

SP14

5-(4-bromophenyl)-N-nonyl-1,3,4-thiadiazol-2-amine

 

C17H24BrN3S

SP15

5-(4-bromophenyl)-N-decyl-1,3,4-thiadiazol-2-amine

 

C18H26BrN3S

SP16

5(4-bromophenyl)-N-undecyl-1,3,4-thiadiazole-2-amine

 

C19H28BrN3S

SP17

5(4-bromophenyl)-N-dodecyl-1,3,4-thiadiazole-2-amine

C20H30BrN3S

SP18

5(4-bromophenyl)-N-tridecyl-1,3,4- thiadiazole-2-amine

C21H32BrN3S

SP19

5(4-bromophenyl)-N-tetradecyl-1,3,4- thiadiazole-2-amine

C22H34BrN3S

SP20

5(4-bromophenyl)-N-pentadecyl-1,3,4-thiadiazole-2-amine

 

C23H36BrN3S

SP21

5-(4-bromophenyl)-N-phenyl-1,3,4-thiadiazol-2-amine

 

C14H10BrN3S

SP22

5-(4-bromophenyl)-N-(2-methylphenyl)-1,3,4-thiadiazol-2-amine

 

C15H11BrN3S

SP23

5-(4-bromophenyl)-N-(3-methylphenyl)-1,3,4-thiadiazol-2-amine

 

C15H11BrN3S

SP24

5-(4-bromophenyl)-N-(4-methylphenyl)-1,3,4-thiadiazol-2-amine

 

C15H11BrN3S

SP25

5-(4-bromophenyl)-N-(2-chlorophenyl)-1,3,4-thiadiazol-2-amine

 

C14H9BrN3SCl

SP26

5-(4-bromophenyl)-N-(3-chlorophenyl)-1,3,4-thiadiazol-2-amine

 

C14H9BrN3SCl

SP27

5-(4-bromophenyl)-N-(4-chlorophenyl)-1,3,4-thiadiazol-2-amine

 

C14H9BrN3SCl

SP28

5-(4-bromophenyl)-N-(2-nitrophenyl)-1,3,4-thiadiazol-2-amine

 

C14H9BrN4SO2

SP29

5-(4-bromophenyl)-N-(3-nitrophenyl)-1,3,4-thiadiazol-2-amine

 

C14H9BrN4SO2

SP30

5-(4-bromophenyl)-N-(4-nitrophenyl)-1,3,4-thiadiazol-2-amine

 

C14H9BrN4SO2

SP31

5-(4-bromophenyl)-N-(2-methoxyphenyl)-1,3,4-thiadiazol-2-amine

 

C15H12BrN3SO

SP32

5-(4-bromophenyl)-N-(3-methoxyphenyl)-1,3,4-thiadiazol-2-amine

 

C15H12BrN3SO

SP33

5-(4-bromophenyl)-N-(4-methoxyphenyl)-1,3,4-thiadiazol-2-amine

 

C15H12BrN3SO

 Where: IUPAC – International Union of Pure and Applied Chemistry, MF – Molecular Formula

Table 2: Lipinski rule of 5, Veber’s rule

Compound Code

Lipinski rule of five

Veber’s rule

MW

Log P

HBA

HBD

Lipinski

violation

TPSA

Rotatable

Bond

SP1

284.18

2.76

2

1

0

66.05

3

SP2

298.2

2.99

2

1

0

66.05

4

SP3

298.2

2.95

2

1

0

66.05

3

SP4

312.23

3.13

2

1

0

66.05

5

SP5

312.23

3.25

2

1

0

66.05

4

SP6

312.23

3.22

2

1

0

66.05

4

SP7

312.23

3.08

2

1

0

66.05

3

SP8

326.26

3.32

2

1

0

66.05

6

SP9

326.26

3.41

2

1

0

66.05

5

SP10

326.26

3.41

2

1

0

66.05

4

SP11

340.28

3.68

2

1

0

66.05

7

SP12

354.31

3.82

2

1

0

66.05

8

SP13

368.33

4.13

2

1

0

66.05

9

SP14

382.36

4.4

2

1

1

66.05

10

SP15

396.39

4.76

2

1

1

66.05

11

SP16

410.41

4.83

2

1

1

66.05

12

SP17

424.44

5.08

2

1

1

66.05

13

SP18

438.47

5.22

2

1

1

66.05

14

SP19

452.49

5.49

2

1

1

66.05

15

SP20

466.52

5.73

2

1

1

66.05

16

SP21

332.22

2.89

2

1

0

66.05

3

SP22

346.24

3.07

2

1

0

66.05

3

SP23

346.24

3.17

2

1

0

66.05

3

SP24

346.24

3.15

2

1

0

66.05

3

SP25

366.66

3.35

2

1

0

66.05

3

SP26

366.66

3.26

2

1

0

66.05

3

SP27

366.66

3.18

2

1

0

66.05

3

SP28

377.22

2.61

4

1

0

111.87

4

SP29

377.22

2.64

4

1

0

111.87

4

SP30

377.22

2.54

4

1

0

111.87

4

SP31

362.24

3.44

3

1

0

75.28

4

SP32

362.24

3.21

3

1

0

75.28

4

SP33

362.24

3.23

3

1

0

75.28

4

Where: MW- Molecular Weight, HBA - Number of hydrogen bond acceptors, HBD - Number of hydrogen bond donor, TPSA – Total Polar Surface area, Log p - logarithm of compound partition.

Table 3: the pharmacokinetics and drug-likeness Properties of Compound

Code

GI absor

ption

BBB

PERMEANT

Pgp

substrate

CYP1A2

inhibitor

CYP2C19

inhibitor

CYP2C9

inhibitor

CYP2D6

inhibitor

CYP3A4

inhibitor

Ghose

 

Veber

 

Egan

 

Muegge

Bioavailability score

SP1

High

Yes

No

Yes

Yes

Yes

No

No

0

0

0

0

0.55

SP2

High

Yes

No

Yes

Yes

Yes

No

No

0

0

0

0

0.55

SP3

High

Yes

No

Yes

Yes

Yes

No

No

0

0

0

0

0.55

SP4

High

Yes

No

Yes

Yes

Yes

Yes

No

0

0

0

0

0.55

SP5

High

Yes

No

Yes

Yes

Yes

No

No

0

0

0

0

0.55

SP6

High

Yes

No

Yes

Yes

Yes

No

No

0

0

0

0

0.55

SP7

High

Yes

No

Yes

Yes

Yes

No

No

0

0

0

0

0.55

SP8

High

Yes

No

Yes

Yes

Yes

Yes

No

0

0

0

0

0.55

SP9

High

Yes

No

Yes

Yes

Yes

Yes

No

0

0

0

0

0.55

SP10

High

Yes

No

Yes

Yes

Yes

No

No

0

0

0

0

0.55

SP11

High

Yes

No

Yes

Yes

Yes

Yes

Yes

0

0

0

1

0.55

SP12

High

No

No

Yes

Yes

Yes

Yes

Yes

0

0

0

1

0.55

SP13

High

No

No

Yes

Yes

Yes

Yes

Yes

0

0

0

1

0.55

PS14

High

No

No

Yes

Yes

Yes

Yes

Yes

1

0

1

1

0.55

SP15

High

No

No

No

Yes

Yes

Yes

Yes

1

1

1

1

0.55

SP16

High

No

No

No

Yes

Yes

Yes

Yes

1

1

1

1

0.55

SP17

Low

No

Yes

No

Yes

Yes

No

Yes

1

1

1

1

0.55

SP18

Low

No

Yes

No

Yes

No

NO

Yes

1

1

1

1

0.55

SP19

Low

No

Yes

No

Yes

No

NO

Yes

1

1

1

1

0.55

SP20

Low

No

Yes

No

Yes

No

NO

Yes

1

1

1

2

0.55

SP21

High

Yes

No

Yes

Yes

Yes

No

Yes

0

0

0

0

0.55

SP22

High

Yes

No

Yes

Yes

Yes

No

Yes

0

0

0

0

0.55

SP23

High

Yes

No

Yes

Yes

Yes

No

Yes

0

0

0

0

0.55

SP24

High

Yes

No

Yes

Yes

Yes

No

Yes

0

0

0

0

0.55

SP25

High

No

No

Yes

Yes

Yes

No

No

0

0

0

1

0.55

SP26

High

No

No

Yes

Yes

Yes

No

No

0

0

0

1

0.55

SP27

High

No

No

Yes

Yes

Yes

No

No

0

0

0

1

0.55

SP28

High

No

No

Yes

Yes

Yes

No

No

0

0

0

0

0.55

SP29

High

No

No

Yes

Yes

Yes

No

No

0

0

0

0

0.55

SP30

High

No

No

Yes

Yes

Yes

No

No

0

0

0

0

0.55

SP31

High

No

No

Yes

Yes

Yes

Yes

Yes

0

0

0

0

0.55

SP32

High

No

No

Yes

Yes

Yes

Yes

Yes

0

0

0

0

0.55

SP33

High

No

No

Yes

Yes

Yes

Yes

Yes

0

0

0

0

0.55

Where: GI - gastrointestinal absorption, BBB- blood brain barrier penetration; P-gp - p-glycoprotein

Table 4: The acute toxicity of Compounds

COMP. CODE

LD50

(mg/kg)

Toxicity

class

Prediction

Accuracy (%)

Hepatotoxicity

Carcinogenicity

Immunotoxicity

Mutagenicity

Cytotoxicity

SP1

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP2

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP3

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP4

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP5

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP6

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP7

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP8

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP9

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP10

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP11

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP12

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP13

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP14

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP15

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP16

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP17

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP18

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP19

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP20

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP21

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP22

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP23

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP24

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP25

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP26

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP27

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP28

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP29

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP30

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP31

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP32

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

SP33

1190

4

100

A (0.69)

I (0.62)

A (0.96)

I (0.97)

I (0.93)

 Where: I- Inactive, A - Active

Table  5: Standard Erlotinib Docking Score and 2D, 3D Images

CODE

ACTIVE AMINO ACID

BOND TYPE

DOCKING SCORE

2D IMAGE

3D IMAGE

Erlotinib

CYS797

Conventional Hydrogen Bond

-6.8

 

 

 

 

CYS797

ARG841

Carbon Hydrogen Bond

LEU718

Pi-Sigma

LEU844

MET790

Pi-Sulfur

LEU718

Pi-Alkyl

ALA743

LEU844

 

Table 6: Derivatives Docking Score and 2D, 3D Images

CODE

ACTIVE AMINO ACID

BOND TYPE

DOCKING SCORE

2D Image

3D Image

SP1

LEU778

Conventional Hydrogen Bond

-5.8

 

 

 

 

ILE1018

Pi-Cation

ARG776

Pi-Anion

LEU778

ILE1018

Pi-Sigma

ARG776

Alkyl

LEU778

Pi-Alkyl

SP2

LEU844

Pi-Sigma

-5.8

 

 

 

 

PHE723

ALA743

Alkyl

LEU718

LEU792

VAL726

Pi-Alkyl

ALA743

SP3

ASP1014

Conventional Hydrogen Bond

-6.3

 

 

 

 

ARG705

Carbon Hydrogen Bond

ARG776

Pi-Cation

ARG705

Alkyl

PRO772

ALA1013

Pi-Alkyl

SP4

LEU778

Carbon Hydrogen Bond

-6.2

 

 

 

 

ARG776

Pi-Cation

ASP1014

Pi-Anion

LEU778

Pi-Sigma

ARG705

Alkyl

ILE1018

LEU703

ARG705

ILE1018

ALA1013

Pi-Alkyl

ARG776

SP5

ASP1014

Conventional Hydrogen Bond

-6.2

 

 

 

 

ARG705

Carbon Hydrogen Bond

ARG776

Pi-Cation

ARG705

Alkyl

PRO772

 

ALA1013

Pi-Alkyl

SP6

ALA1013

Conventional Hydrogen Bond

-6.3

 

 

 

 

ARG776

Pi-Cation

LEU703

Alkyl

ARG705

ARG776

LEU778

Pi-Alkyl

LEU1017

ARG705

SP7

ASP1014

Conventional Hydrogen Bond

-6.1

 

 

 

 

ARG705

Carbon Hydrogen Bond

ARG776

Pi-Cation

LEU1017

Pi-Sigma

ARG705

Alkyl

SP8

ARG705

Carbon Hydrogen Bond

-6.1

 

 

 

 

ASP770

ARG776

Pi-Cation

PRO772

Alkyl

ARG705

PRO772

HIS850

Pi-Alkyl

ALA1013

SP9

LEU778

Conventional Hydrogen Bond

-6.2

 

 

 

 

ARG776

Pi-Cation

ASP770

Pi-Anion

Pi-Anion

ASP1014

LEU778

Pi-Sigma

ILE1018

Alkyl

ALA1013

Pi-Alkyl

ARG776

SP10

MET793

Conventional Hydrogen Bond

-5.9

 

 

 

 

LEU718

Pi-Sigma

 

LEU718

MET790

Alkyl

 

LEU844

ALA743

Pi-Alkyl

SP11

LEU844

Pi-Sigma

-6.1

 

 

 

 

MET790

Pi-Sulfur

ALA743

Alkyl

ILE759

LEU718

LEU792

PHE723

Pi-Alkyl

PHE723

VAL726

ALA743

SP12

LYS745

Pi-Cation;  Pi-Donor Hydrogen Bond

-6.1

 

 

 

 

LEU844

Pi-Sigma

MET790

Pi-Sulfur

ALA743

Alkyl

ILE759

LEU718

PHE723

Pi-Alkyl

ALA743

SP13

LYS745

Pi-Cation;Pi-Donor Hydrogen Bond

-6.2

 

 

 

 

LEU844

Pi-Sigma

MET766

Pi-Sulfur

MET790

ALA743

Alkyl

LEU747

ILE759

LEU718

VAL726

VAL726

Pi-Alkyl

ALA743

SP14

GLU758

Conventional Hydrogen Bond

-5.7

 

 

 

 

ASP761

Pi-Anion

LEU747

Alkyl

Alkyl

ILE759

PHE723

Pi-Alkyl

SP15

ARG776

Pi-Cation

-6.0

 

 

 

 

ASP770

Pi-Anion

 

ASP1014

LEU778

Pi-Sigma

ARG705

Alkyl

ILE1018

LEU703

ALA1013

Pi-Alkyl

ARG776

SP16

SER912

Conventional Hydrogen Bond

-6.1

 

 

 

 

PRO934

Alkyl

PRO934

PRO934

LEU933

PRO934

TRP905

Pi-Alkyl

TRP905

PHE910

TYR915

SP17

LEU718

Pi-Sigma

-5.4

 

 

 

 

LEU718

VAL726

Alkyl

VAL726

ALA743

CYS797

MET790

LEU718

PHE723

Pi-Alkyl

ALA743

LEU844

SP18

ALA1013

Conventional Hydrogen Bond

-5.9

 

 

 

 

ASP770

Pi-Anion

ASP1014

ASP1014

Pi-Sigma

LEU778

Alkyl

PRO772

ILE1018

ILE1018

LEU703

ARG705

ILE1018

TYR1016

Pi-Alkyl

PRO772

SP19

GLU758

Conventional Hydrogen Bond

-5.9

 

 

 

 

ASP761

Pi-Anion

LEU747

Alkyl

ILE759

PHE723

Pi-Alkyl

PHE723

SP20

SER912

Conventional Hydrogen Bond

-5.7

 

 

 

 

PRO934

Alkyl

PRO934

PRO934

PRO934

ILE981

TRP905

Pi-Alkyl

TRP905

PHE910

TYR915

SP21

ARG776

Conventional Hydrogen Bond

-6.6

 

 

 

 

ASP770

Pi-Anion

ASP1014

LEU1017

Pi-Sigma

PRO772

Alkyl

LEU778

Pi-Alkyl

SP22

LYS745

Conventional Hydrogen Bond

-6.9

 

 

 

 

ASP855

Pi-Anion

LEU844

Pi-Sigma

MET790

Pi-Sulfur

PHE723

Pi-Pi Stacked

ALA743

Alkyl

MET793

VAL726

Pi-Alkyl

ALA743

SP23

ARG776

Conventional Hydrogen Bond

-7.2

 

 

 

 

ASP770

Pi-Anion

LEU1017

Alkyl

ILE1018

PRO772

ALA1013

Pi-Alkyl

SP24

ARG776

Conventional Hydrogen Bond

-7.0

 

 

 

 

ARG705

Carbon Hydrogen Bond

ARG776

Pi-Cation

PRO772

Alkyl

ILE1018

ALA1013

Pi-Alkyl

PRO772

SP25

LEU778

Conventional Hydrogen Bond

-7.6

 

 

 

 

ARG776

Pi-Cation

ASP770

Pi-Anion

ASP1014

LEU778

Pi-Sigma

ALA1013

Pi-Alkyl

ARG705

ARG776

SP26

LEU718

Pi-Sigma

-6.8

 

 

 

 

LEU844

MET790

Pi-Sulfur

MET766

Alkyl

MET790

LEU718

LEU718

Pi-Alkyl

ALA743

LEU844

SP27

ASP1012

Pi-Anion

-6.7

 

 

 

 

THR847

Pi-Sigma

PHE997

Pi-Sulfur

PHE997

Pi-Pi T-shaped

PRO992

Alkyl

LEU792

 

PRO794

PRO992

PRO741

Pi-Alkyl

PRO794

SP28

LEU718

Pi-Sigma

-7.1

 

 

 

 

LEU718

Alkyl

LEU718

Pi-Alkyl

ALA743

LEU844

VAL726

MET790

SP29

LYS745

Pi-Cation

-7.3

 

 

 

 

ASP855

Pi-Anion

LEU844

Pi-Sigma

PHE723

Pi-Pi Stacked

VAL726

Pi-Alkyl

ALA743

MET790

SP30

LYS745

Conventional Hydrogen Bond

-7.1

 

 

 

 

THR854

ASP855

LEU718

Pi-Sigma

LEU718

Alkyl

LEU718

Pi-Alkyl

ALA743

LEU844

VAL726

MET790

LEU844

SP31

ASP855

Conventional Hydrogen Bond

-6.4

 

 

 

 

GLU762

Carbon Hydrogen Bond

LYS745

Pi-Cation

LYS745

GLU762

Pi-Anion

PHE723

Pi-Sulfur

PHE723

Pi-Pi Stacked

PHE723

Pi-Pi T-shaped

ALA755

Alkyl

MET766

SP32

ALA1013

Conventional Hydrogen Bond

-6.9

 

 

 

 

ASP1014

Carbon Hydrogen Bond

ARG705

Pi-Cation

ARG776

ARG776

LYS852

ASP770

Pi-Anion

ASP1014

LEU703

Alkyl

ARG705

ILE1018

LEU1017

Pi-Alkyl

ARG776

ARG705

SP33

LEU718

Pi-Sigma

-6.9

 

 

 

 

LEU844

MET790

Pi-Sulfur

LEU718

Pi-Alkyl

ALA743

Where: 2D-Two Dimension, 3D – Three Dimension

CONCLUSION

In this Present work, we designed a series of 33 thiadiazole derivatives as potential anticancer agents targeting EGFR kinase. The ADMET analysis revealed that 26 out of 33 molecules adhered to Lipinski’s rule of five with zero violations, indicating their potential as drug-like candidates. Furthermore, all compounds successfully passed the toxicity assessment, suggesting favourable pharmacokinetic and safety profiles.

Molecular docking studies were conducted to evaluate the binding affinity of these thiadiazole derivatives against the EGFR kinase. The docking results demonstrated that compounds SP22, SP23, SP24, SP25, SP26, SP28, SP29, SP30, SP32, and SP33 exhibited higher docking scores compared to the standard anticancer drug Erlotinib, suggesting their potential as promising EGFR inhibitors. These findings indicate that selected thiadiazole derivatives could serve as potential lead compounds for further in vitro and in vivo investigations, aiming to develop novel anticancer agents targeting EGFR

ACKNOWLEDGEMENTS

We special thanks to the principal of Pravara Rural College of Pharmacy, Pravaranagar for the providing the facilities for research work.

REFERENCES

  1. Kurban B, Sa?l?k BN, Osmaniye D, Levent S, Özkay Y, Kaplanc?kl? ZA. Synthesis and anticancer activities of pyrazole–thiadiazole-based EGFR inhibitors. ACS Omega. 2023;8(31):31500–9. doi:10.1021/acsomega.3c04567.
  2. Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP, et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 2018;17(1):48. doi:10.1186/s12943-018-0804-2.
  3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. doi:10.3322/caac.21708.
  4. Magar SD, Pawar PY. In silico ADMET screening and molecular docking of some 1-(5-(4-chlorophenyl)-1,3,4-oxadiazol-3(2H)-yl) ethanone derivatives to be developed as triple mutant T790M/C797S EGFR inhibitors. Int J Health Sci. 2022 Jun 22;6(S3). doi:10.53730/ijhs.v6nS3.9448.
  5. Song  Z,  Ge  Y,  Wang  C,  Huang  S,  Shu  X,  Liu  K,  et  al.  Challenges  and perspectives  on  the  development  of  small-molecule  EGFR  inhibitors  against T790M-mediated  resistance  in  non-small-cell  lung  cancer:  Miniperspective. Vol. 59, Journal of Medicinal Chemistry. 2016. p. 6580–94.
  6. Li X, et al. Strategies to overcome resistance to EGFR inhibitors in NSCLC. J Hematol Oncol. 2019;12(1):63.
  7. Mishra A, Verma A. 1,3,4-Thiadiazole: A promising scaffold for therapeutic development. Eur J Med Chem. 2020;207:112778.
  8. Stecoza CE, Nitulescu GM, Draghici C, Caproiu MT, Hanganu A, Olaru OT, Mihai DP, Bostan M, Mihaila M. Synthesis of 1,3,4-thiadiazole derivatives and their anticancer evaluation. Int J Mol Sci. 2023;24(24):17476. doi:10.3390/ijms242417476
  9. Kumar A, Kumar H, Kumar V, Deep A, Sharma A, Gupta Marwaha M, Marwaha RK. Mechanism-based approaches of 1,3,4 thiadiazole scaffolds as potent enzyme inhibitors for cytotoxicity and antiviral activity. Med Drug Discov. 2023 Feb;17:10150. https://doi.org/10.1016/j.medidd.2022.100150
  10. Eissa IH, Elgammal WE, Mahdy HA, Zara S, Carradori S, Hussein DZ, Alharthi MN, Ibrahim IM, Elkaeed EB, Elkady H, Metwaly AM. Design, synthesis, and evaluation of novel thiadiazole derivatives as potent VEGFR-2 inhibitors: a comprehensive in vitro and in silico study. RSC Adv. 2024; 14:35505-19. doi:10.1039/D4RA04158E
  11. Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.
  12. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257-63.
  13. Chan DLH, Segelov E, Wong RSH, Smith A, Herbertson RA, Li BT, et al. Epidermal growth factor receptor (EGFR) inhibitors for metastatic colorectal cancer. Cochrane Database Syst Rev. 2017;2017(6):CD012183.
  14. Khan A, Unnisa A, Sohel M, Date M, Panpaliya N, Saboo SG, et al. Investigation of phytoconstituents of Enicostemma littorale as potential glucokinase activators through molecular docking for the treatment of type 2 diabetes mellitus. Silico Pharmacol. 2022;10(1). Available from: https://doi.org/10.1007/s40203-021-00116-8
  15. Krzywinski M, Altman N. Points of significance: Significance, P values and t .tests. Nat Methods. 2013;10(11):104  

Reference

  1. Kurban B, Sa?l?k BN, Osmaniye D, Levent S, Özkay Y, Kaplanc?kl? ZA. Synthesis and anticancer activities of pyrazole–thiadiazole-based EGFR inhibitors. ACS Omega. 2023;8(31):31500–9. doi:10.1021/acsomega.3c04567.
  2. Bhullar KS, Lagarón NO, McGowan EM, Parmar I, Jha A, Hubbard BP, et al. Kinase-targeted cancer therapies: progress, challenges and future directions. Mol Cancer. 2018;17(1):48. doi:10.1186/s12943-018-0804-2.
  3. Siegel RL, Miller KD, Fuchs HE, Jemal A. Cancer statistics, 2022. CA Cancer J Clin. 2022;72(1):7–33. doi:10.3322/caac.21708.
  4. Magar SD, Pawar PY. In silico ADMET screening and molecular docking of some 1-(5-(4-chlorophenyl)-1,3,4-oxadiazol-3(2H)-yl) ethanone derivatives to be developed as triple mutant T790M/C797S EGFR inhibitors. Int J Health Sci. 2022 Jun 22;6(S3). doi:10.53730/ijhs.v6nS3.9448.
  5. Song  Z,  Ge  Y,  Wang  C,  Huang  S,  Shu  X,  Liu  K,  et  al.  Challenges  and perspectives  on  the  development  of  small-molecule  EGFR  inhibitors  against T790M-mediated  resistance  in  non-small-cell  lung  cancer:  Miniperspective. Vol. 59, Journal of Medicinal Chemistry. 2016. p. 6580–94.
  6. Li X, et al. Strategies to overcome resistance to EGFR inhibitors in NSCLC. J Hematol Oncol. 2019;12(1):63.
  7. Mishra A, Verma A. 1,3,4-Thiadiazole: A promising scaffold for therapeutic development. Eur J Med Chem. 2020;207:112778.
  8. Stecoza CE, Nitulescu GM, Draghici C, Caproiu MT, Hanganu A, Olaru OT, Mihai DP, Bostan M, Mihaila M. Synthesis of 1,3,4-thiadiazole derivatives and their anticancer evaluation. Int J Mol Sci. 2023;24(24):17476. doi:10.3390/ijms242417476
  9. Kumar A, Kumar H, Kumar V, Deep A, Sharma A, Gupta Marwaha M, Marwaha RK. Mechanism-based approaches of 1,3,4 thiadiazole scaffolds as potent enzyme inhibitors for cytotoxicity and antiviral activity. Med Drug Discov. 2023 Feb;17:10150. https://doi.org/10.1016/j.medidd.2022.100150
  10. Eissa IH, Elgammal WE, Mahdy HA, Zara S, Carradori S, Hussein DZ, Alharthi MN, Ibrahim IM, Elkaeed EB, Elkady H, Metwaly AM. Design, synthesis, and evaluation of novel thiadiazole derivatives as potent VEGFR-2 inhibitors: a comprehensive in vitro and in silico study. RSC Adv. 2024; 14:35505-19. doi:10.1039/D4RA04158E
  11. Daina A, Michielin O, Zoete V. SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness, and medicinal chemistry friendliness of small molecules. Sci Rep. 2017;7:42717.
  12. Banerjee P, Eckert AO, Schrey AK, Preissner R. ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Res. 2018;46(W1):W257-63.
  13. Chan DLH, Segelov E, Wong RSH, Smith A, Herbertson RA, Li BT, et al. Epidermal growth factor receptor (EGFR) inhibitors for metastatic colorectal cancer. Cochrane Database Syst Rev. 2017;2017(6):CD012183.
  14. Khan A, Unnisa A, Sohel M, Date M, Panpaliya N, Saboo SG, et al. Investigation of phytoconstituents of Enicostemma littorale as potential glucokinase activators through molecular docking for the treatment of type 2 diabetes mellitus. Silico Pharmacol. 2022;10(1). Available from: https://doi.org/10.1007/s40203-021-00116-8
  15. Krzywinski M, Altman N. Points of significance: Significance, P values and t .tests. Nat Methods. 2013;10(11):104  

Photo
Sagar Magar
Corresponding author

Department of Pharmaceutical Chemistry, PRES, Pravara Rural College of Pharmacy Pravaranagar, Maharashtra 413736, India

Photo
Amol Dighe
Co-author

Department of Pharmaceutical Chemistry, PRES, Pravara Rural College of Pharmacy Pravaranagar, Maharashtra 413736, India

Photo
Manisha Sonawane
Co-author

Department of Pharmaceutical Chemistry, PRES, Pravara Rural College of Pharmacy Pravaranagar, Maharashtra 413736, India

Photo
Nilima Wani
Co-author

Department of Pharmaceutical Chemistry, PRES, Pravara Rural College of Pharmacy Pravaranagar, Maharashtra 413736, India

Photo
Pradnya Bawake
Co-author

Department of Pharmaceutical Chemistry, PRES, Pravara Rural College of Pharmacy Pravaranagar, Maharashtra 413736, India

Photo
Shainesh Bhosale
Co-author

Department of Pharmaceutical Chemistry, PRES, Pravara Rural College of Pharmacy Pravaranagar, Maharashtra 413736, India

Sagar Magar*, Amol Dighe, Manisha Sonawane, Nilima Wani, Pradnya Bawake, Shainesh Bhosale, Designing, In Silico Screening and Molecular Docking Studies of Some Novel 5-(4-Bromophenyl)-N-Ethyl-1,3,4-Thiadiazol-2-Amine Derivatives Targeting EGFR Kinase, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 6, 4038-4055. https://doi.org/10.5281/zenodo.15732309

More related articles
Analyzing Antihypertensive Drugs Floating Times fo...
Dr. Rama Rao Vadapalli, Darisi Saketh, Gangolu Yohan, Gurram Loke...
Evaluation of Antiurolithiatic activity of Celosia...
Rohit Aghane, Girish Kokate, Harshala Shirose, Harsh Suroshe, Dr....
The Role of Ferroptosis in Gastric Cancer...
Md Foysal Uddin Sarker Shanto, Xu Zhitao, Sahar Saberi, Samiul Ha...
A Brief Review on Quinine Sulphate Sustained Release Tablet...
Lamkhade Snehal, Shelke Pranali, Dr. Wakale Vijaykumar S., ...
Formulation and Evaluation of Instant Energy Bar ...
Nagesh Masal, Amol Ban, Akshay Mohite , Supriya Mohite, ...
Related Articles
Exploring Antimicrobial Efficacy in Cosmeceutical Product: Current Insight and F...
Ankit Chauhan , Kakli Rai, Dr. Ashish Kumar Gupta , Sapana Yadav, Ashirvad Chauhan , Nitesh Devvansh...
Development and Validation of RP-HPLC Method for Simultaneous Estimation of Amox...
Uttam Sanandiya, Dhirendra Kumar Tarai, Khyati P. Bhupta, Dr. Santosh R. Kirtane, ...
Process Validation in Pharmaceutical Industry ...
Mahima Kanojia, Neha Sodiyal, Shivanand Patil, ...
Analyzing Antihypertensive Drugs Floating Times for Efficiency Evaluation: A Rev...
Dr. Rama Rao Vadapalli, Darisi Saketh, Gangolu Yohan, Gurram Lokeswari, Bodapati Meghana, Jayanth Ka...
More related articles
Analyzing Antihypertensive Drugs Floating Times for Efficiency Evaluation: A Rev...
Dr. Rama Rao Vadapalli, Darisi Saketh, Gangolu Yohan, Gurram Lokeswari, Bodapati Meghana, Jayanth Ka...
Evaluation of Antiurolithiatic activity of Celosia argentea seeds by UV Spectros...
Rohit Aghane, Girish Kokate, Harshala Shirose, Harsh Suroshe, Dr. Rajanikant Kakade, ...
The Role of Ferroptosis in Gastric Cancer...
Md Foysal Uddin Sarker Shanto, Xu Zhitao, Sahar Saberi, Samiul Haque, Chagouri Bayan, Atefeh Bahrami...
Analyzing Antihypertensive Drugs Floating Times for Efficiency Evaluation: A Rev...
Dr. Rama Rao Vadapalli, Darisi Saketh, Gangolu Yohan, Gurram Lokeswari, Bodapati Meghana, Jayanth Ka...
Evaluation of Antiurolithiatic activity of Celosia argentea seeds by UV Spectros...
Rohit Aghane, Girish Kokate, Harshala Shirose, Harsh Suroshe, Dr. Rajanikant Kakade, ...
The Role of Ferroptosis in Gastric Cancer...
Md Foysal Uddin Sarker Shanto, Xu Zhitao, Sahar Saberi, Samiul Haque, Chagouri Bayan, Atefeh Bahrami...