Archive

  • Nanotechnology and its Therapeutic and Cosmetic Applications: A Review
  • Department of Pharmaceutics, SNJB’s Shriman Sureshdada Jain College of Pharmacy, Chandwad Dist: Nashik, India

Abstract

The design, manufacture, characterisation, and use of structures, devices, and systems on the nanometric scale are the focus of the multidisciplinary scientific field known as nanotechnology. The design, characterization, production, and applications of structures, devices, and systems are all related to nanotechnology and can be controlled to improve patient compliance. Imaging, biosensor, and medication delivery systems are just a few examples of the pharmaceutical nanotechnology that is used in pharmacies. Pharmaceutical nanoparticles have diameters ranging from 5 nm to 300 nm and a variety of morphologies. They are sub-nanoscale structures comprised of several tens or hundreds of atoms or molecules. Drugs and bioactive substances are among them. The pharmaceutical industry's present use of nanotechnology includes the creation of biosensors, biomarkers, nanorobots, tissue engineering, and nanomedicine. Pharmaceutical nanotechnology has opportunities to enhance materials, medical equipment, and contribute to the creation of new technology in fields where more established and conventional technologies may have reached their limits. As a result, advancements in this field will open up new doors for the medical and pharmaceutical industries in the years to come. Disease detection and treatment have improved thanks to nanotechnology, which makes use of nanostructures as a tool. These particles frequently have surfactants and/or polymeric stabilizers attached to their surface, which stabilizes the pure active pharmaceutical ingredient (API) that makes up these particles. The common range of particle sizes is 1 nm to 1000 nm. This method has demonstrated promise in the treatment of AIDS, cancer, and numerous other conditions. The scope and opportunity of nanotechnology in pharmacy, the challenges and prospects for the field, and the future of nanotechnology in pharmacy are the main topics of this review article. It also discusses recent advances in nanostructures and nanotechnology for medication delivery, nanomedicine, cures, drug discovery, cosmetics, and the delivery of medications.

Keywords

Nanoparticles, Nano formulations, Drug delivery, Cancer, Cosmetics

Reference

  1. Bayda, S., Adeel, M., Tuccinardi, T., Cordani, M., &Rizzolio, F. (2020). The history of nanoscienceand nanotechnology: From chemical-physicalapplications to nanomedicine. In Molecules. MDPI, 25(1). doi:10.3390/molecules25010112
  2. Leucuta, S. E. (2010). Nanotechnology for delivery of drugs and biomedical applications. In Current Clinical Pharmacology, 5(4), 257–280. doi:10.2174/157488410793352003
  3. Raj, S., Jose, S., Sumod, U. S., & Sabitha, M. (2012). Nanotechnology in cosmetics: Opportunities and challenges. Journal of Pharmacy and Bioallied Sciences, 4(3), 186–193. doi:10.4103/0975-7406.99016, PubMed: 22923959
  4. Kaul, S., Gulati, N., Verma, D., Mukherjee, S., & Nagaich, U. (2018). Role of nanotechnology in cosmeceuticals: A review of recent advances. Journal of Pharmaceutics, 2018, 3420204. doi:10.1155/2018/3420204
  5. Ajazzuddin, M., Jeswani, G., & Jha, A. (2015). Nanocosmetics: Past, present and future trends. Recent Patents on Nanomedicine, 5(1), 3–11. doi:10.2174/1877912305666150417232826
  6. Schneider, G., Gohla, S., Schreiber, J., Kaden, W., Schönrock, U., Schmidt-Lewerkühne, H. et al. (2021). Connect with Wiley. The Wiley network. Retrieved from https://onlinelibrary.wiley.com/doi/abs/10.1002/14356007.a24_219 (pp. 2–3).
  7. Glass, G. (2004). Pharmaceutical patent challenges time for reassessment?Nature Reviews. Drug Discovery, 3(12), 1057–1062. doi:10.1038/nrd1581
  8. Langer, R. (1990). New methods of drug delivery. Science, 249(4976), 1527–1533. doi:10.1126/science.2218494
  9. Wagner, V., Dullaart, A., Bock, A. K., & Zweck, A. (2006). The emerging nanomedicine landscape. Nature Biotechnology, 24(10), 1211–1217. doi:10.1038/nbt1006-1211
  10. Whitesides, G. M. (2003). The right size in nanobiotechnology. Nature Biotechnology, 21(10), 1161–1165. doi:10.1038/nbt872
  11. Li, K. C. P., Pandit, S. D., Guccione, S., & Bednarski, M. D. (2004). Molecular imaging applications in nanomedicine. Biomedical Microdevices, 6(2), 113–116. doi:10.1023/B:BMMD.0000031747.05317.81
  12. Moghimi, S. M., Hunter, A. C., & Murray, J. C. (2005). Nanomedicine: Current status and future prospects. FASEB Journal, 19(3), 311–330. doi:10.1096/fj.04-2747rev
  13. Shaffer, C. (2005). Nanomedicine transforms drug delivery. Drug Discovery Today, 10(23–24), 1581–1582. doi:10.1016/S1359-6446(05)03654-8
  14. Wilkinson, J. M. (2003). Nanotechnology applications in medicine. Medical Device Technology, 14(5), 29–31.
  15. Cheng, m., Cuda, g., Bunimovich, &Gaspari, m. Health, j., hill, Cheng, M. M., Cuda, G., Bunimovich, Y. L., Gaspari, M., Heath, J. R., Ferrari, M. (2006). Nanotechnologies for biomolecular detection and medical diagnostics. Current Opinion in Chemical Biology, 10(1), 11–19. doi:10.1016/j.cbpa.2006.01.006
  16. Emerich, D. F. (2005). Nanomedicine – Prospective therapeutic and diagnostic applications. Expert Opinion on Biological Therapy, 5(1), 1–5. doi:10.1517/14712598.5.1.1
  17. Jain, K. K. (2003). Nanodiagnostics: Application of nanotechnology in molecular diagnostics. Expert Review of Molecular Diagnostics, 3(2), 153–161. doi:10.1586/14737159.3.2.153
  18. Sahoo, S. K., &Labhasetwar, V. (2003). Nanotech approaches to drug delivery and imaging. Drug Discovery Today, 8(24), 1112–1120. doi:10.1016/S1359-6446(03)02903-9
  19. Azad, N., &Rojanasakul, Y. (2006). Nanobiotechnology in drug delivery. In American Journal of Drug Delivery, 4(2), 79–88. doi:10.2165/00137696-200604020-00003
  20. Rizvi, S. A. A., & Saleh, A. M. (2018). Applicationsof nanoparticle systems in drug delivery technology. In Saudi Pharmaceutical Journal(Vol. 26, Issue 1, pp. 64–70). Elsevier B.V, 26(1), 64–70. doi:10.1016/j.jsps.2017.10.012
  21. Jain, K. K. (2003). Nanodiagnostics: Application of nanotechnology in molecular diagnostics. Expert Review of Molecular Diagnostics, 3(2), 153–161. doi:10.1586/14737159.3.2.153
  22. Jahangirian, H. Ghasemianlemraski, E. Webster: TJ, Rafiee-Moghaddam, R., & Abdollahi, Y. (2017). A review of drug delivery systems based on nanotechnology and green chemistry: green.
  23. Martinho, N., Damgé, C., & Reis, C. P. (2011). Recent advances in drug delivery systems. Journal of Biomaterials and Nanobiotechnology, 02(5), 510–526. doi:10.4236/jbnb.2011.225062
  24. de Jong, W. H., & Borm, P. J. (2008). Drug delivery and nanoparticles: Applications and hazards. International Journal of Nanomedicine, 3(2), 133–149. doi:10.2147/IJN.S596
  25. La Francesca, S. (2011). Nanotechnology and stem cell theraPy for CardiovasCular diseases: Potential aPPliCations. Methodist DeBakey Cardiovascular Journal, 8(1). doi:10.14797/mdcj-8-1-28
  26. Li, T., Liang, W., Xiao, X., & Qian, Y. (2018). Nanotechnology, an alternative with promising.
  27. Wei, C., Wei, W., Morris, M., Kondo, E., Gorbounov, M., &Tomalia, D. A. (2007). Nanomedicine and drug delivery. In Medical Clinics of North America(Vol., 91(5), 863–870). doi:10.1016/j.mcna.2007.05.005
  28. Khan, A. U., Khan, M., Cho, M. H., & Khan, M. M. (2020). Selected nanotechnologies and.
  29. Deng, Z., Kalin, G. T., Shi, D., &Kalinichenko, V. V. (2021). Nanoparticle Delivery Systems with Cell-Specific Targeting for Pulmonary Diseases. American Journal of Respiratory Cell and.
  30. LaRocque, J., Bharali, D. J., & Mousa, S. A. (2009). Cancer detection and treatment: The role of nanomedicines. Molecular Biotechnology, 42(3), 358–366. doi:10.1007/s12033-009-9161-0
  31. Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. del P., Acosta-Torres, L. S., .?.?. Shin, H.-S. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71. doi:10.1186/s12951-018-0392-8
  32. Misra, R., Acharya, S., & Sahoo, S. K. (2010). Cancer nanotechnology: Application of nanotechnology in cancer therapy. Drug Discovery Today, 15(19–20), 842–850. doi:10.1016/j.drudis.2010.08.006
  33. Jaishree, V., & Gupta, P. D. (2012). Nanotechnology: A revolution in cancer diagnosis. Indian Journal of Clinical Biochemistry, 27(3), 214–220. doi:10.1007/s12291-012-0221-z
  34. Chan, W. C. W., & Nie, S. (1998). Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science, 281(5385), 2016–2018. doi:10.1126/science.281.5385.2016
  35. Khezri, K., Saeedi, M., & Maleki Dizaj, S. (2018). Application of nanoparticles in percutaneous delivery of active ingredients in cosmetic preparations. In Biomedicine and Pharmacotherapy. Elsevier Masson SAS, 106. doi:10.1016/j.biopha.2018.07.084
  36. Kaul, S., Gulati, N., Verma, D., Mukherjee, S., & Nagaich, U. (2018). Role of nanotechnology in cosmeceuticals: A review of recent advances. Journal of Pharmaceutics, 2018, 3420204. doi:10.1155/2018/3420204
  37. Mu, L., &Sprando, R. L. (2010). Application of nanotechnology in cosmetics. Journal of International Pharmaceutical Research(Vol. 27, Issue 8, pp. 1746–1749), 27(8), 1746–1749. doi:10.1007/s11095-010-0139-1
  38. Santos, A. C., Morais, F., Simões, A., Pereira, I., Sequeira, J. A. D., Pereira-Silva, M., .?.?. Ribeiro, A. (2019). Nanotechnology for the development of new cosmetic formulations. Expert Opinion on Drug Delivery(Vol. 16, Issue 4, pp. 313–330). Taylor and Francis Ltd, 16(4), 313–330. doi:10.1080/17425247.2019.1585426
  39. Katz, L. M., Dewan, K., & Bronaugh, R. L. (2015). Nanotechnology in cosmetics. Food and Chemical Toxicology, 85, 127–137. doi:10.1016/j.fct.2015.06.020
  40. Sonneville-Aubrun, O., Simonnet, J. T., &L’Alloret, F. (2004). Nanoemulsions: A new vehicle for skincare products. Advances in Colloid and Interface Science, 108–109, 145–149. doi:10.1016/j.cis.2003.10.026
  41. Lee, R., Shenoy, D., & Sheel, R. Micellar nanoparticles: Applications for topical and passive transdermal drug delivery. In.
  42. Lohani, A., Verma, A., Joshi, H., Yadav, N., & Karki, N. (2014). Nanotechnology-based cosmeceuticals. ISRN Dermatology, 2014, 843687. doi:10.1155/2014/843687
  43. Dhapte-Pawar, V., Kadam, S., Saptarsi, S., &Kenjale, P. P. (2020). Nanocosmeceuticals: Facets and aspects. Future Science OA, 6(10), FSO613. doi:10.2144/fsoa-2019-0109
  44. Raj, S., Jose, S., Sumod, U. S., & Sabitha, M. (2012). Nanotechnology in cosmetics: Opportunities and challenges. Journal of Pharmacy and Bioallied Sciences, 4(3), 186–193. doi:10.4103/0975-7406.99016, PubMed: 22923959
  45. Rigano, L., & Lionetti, N. (2021). Nanobiomaterials in Galenic formulations and cosmetics (pp. 1–2). Norwich, NY: William Andrew Publishing.
  46. Fytianos, G., Rahdar, A., &Kyzas, G. Z. (2020). Nanomaterials in cosmetics: Recent updates. Nanomaterials, 10(5), 979. doi:10.3390/nano10050979
  47. Xu, X., Costa, A. P., Khan, M. A., & Burgess, D. J. (2012). Application of quality by design to formulation and processing of protein liposomes. International Journal of Pharmaceutics, 434(1–2), 349–359. doi:10.1016/j.ijpharm.2012.06.002, PubMed: 22683453
  48. Joseph, J., Vedha Hari, B. N., & Devi, R. D. (2018). Experimental optimization of lornoxicam liposomes for sustained topical delivery. European Journal of Pharmaceutical Sciences, 112, 38–51. doi:10.1016/j.ejps.2017.10.032
  49. Hanes, J., Cleland, J. L., & Langer, R. (1997). New advances in microsphere-based single-dose vaccines. Advanced Drug Delivery Reviews, 28(1), 97–119. doi:10.1016/S0169-
  50. Han, S. B., Won, B., Yang, S. C., & Kim, D. H. (2021). AsteriasPectinifera derived collagen peptide-encapsulating elastic nanoliposomes for the cosmetic application. Journal of Industrial and Engineering Chemistry, 98, 289–297. doi:10.1016/j.jiec.2021.03.039
  51. Kocic, H., Stankovic, M., Tirant, M., Lotti, T., &Arsic, I. (2020). Favorable effect of creams with skimmed donkey milk encapsulated in nanoliposomes on skin physiology. Dermatologic Therapy, 33(4), e13511. doi:10.1111/dth.13511
  52. Sankar, V., Wilson, V., Siram, K., Karuppaiah, A., Hariharan, S., & Justin, A. (2019). Topical delivery of drugs using ethosomes: A review. Indian Drugs, 56(8), 7–20. doi:10.53879/id.56.08.11504
  53. Verma, P., & Pathak, K. (2010). Therapeutic and cosmeceutical potential of ethosomes: An overview. Journal of Advanced Pharmaceutical Technology and Research, 1(3), 274–282. doi:10.4103/0110-5558.72415
  54. Limsuwan, T., Boonme, P., Khongkow, P., &Amnuaikit, T. (2017). Ethosomes of phenylethyl resorcinol as vesicular delivery system forSkin lightening applications. BioMed Research International, 2017, 8310979. doi:10.1155/2017/8310979
  55. Yang, J., & Kim, B. (2018). Synthesis and characterization of ethosomal carriers containing cosmetic ingredients for enhanced transdermal delivery of cosmetic ingredients. Korean Journal of Chemical Engineering, 35(3), 792–797. doi:10.1007/s11814-017-0344-2
  56. Shukla, R., Tiwari, G., Tiwari, R., & Rai, A. K. (2020). Formulation and evaluation of the topical ethosomal gel of melatonin to prevent UVradiation. Journal of Cosmetic Dermatology, 19(8), 2093–2104. doi:10.1111/jocd.13251
  57. Yücel, Ç., &SekerKaratoprak, G. (2019). De?gim, ?I.T. Anti-Aging Formulation of Rosmarinic Acid-Loaded Ethosomes and Liposomes.J. Microencapsul., 36, 180–191.
  58. Pravalika, G., Chandhana, P., Chiranjitha, I., &Dhurke, R. (2020). Minoxidilethosomes for treatment of alopecia. International Journal of Recent Scientific Research, 11, 37112–37117.
  59. Kaul, S., Gulati, N., Verma, D., Mukherjee, S., & Nagaich, U. (2018). Role of nanotechnology in cosmeceuticals: A review of recent advances. Journal of Pharmaceutics, 2018, 3420204. doi:10.1155/2018/3420204
  60. Hooda, A., &Sradhanjali, M. (2017). Popsy. Formulation and evaluation of novel solid lipid microparticles for the sustained release ofOfloxacin. Pharmaceutical Nanotechnology, 4, 329–341. doi:Crossref
  61. Pardeike, J., Hommoss, A., & Müller, R. H. (2009). Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. International Journal of Pharmaceutics, 366(1–2), 170–184. doi:10.1016/j.ijpharm.2008.10.003, PubMed: 18992314
  62. Singh, M., & Mohapatra, S.; Sanskriti; Kaur, N.; Mushtaq, A.; Zahid, S.; Pandith, A.A.; Mansoor, S.; Iqbal, Z. Harnessing the Potential of Phytochemicals for Breast Cancer Treatment. In Dietary Phytochemicals; Egbuna, C., Hassan, S., Eds.; Springer: Cham, Switzerland, 2021; pp. 223–251. [CrossRef].
  63. Wissing, S. A., & Müller, R. H. (2003). Cosmetic applications for solid lipid nanoparticles (SLN). International Journal of Pharmacy, 254, 65–68. doi:
  64. Lee, Y. J., & Nam, G. W. (2020). Sunscreen boosting effect by solid lipid nanoparticles-loaded fucoxanthin formulation. Cosmetics, 7(1), 14. doi:10.3390/cosmetics7010014
  65. Wissing, S. A., & Müller, R. H. (2001). A novel sunscreen system based on tocopherol acetate incorporated into solid lipid nanoparticles. International Journal of Cosmetic Science, 23(4), 233–243. doi:10.1046/j.1467-2494.2001.00087.x
  66. Song, C., & Liu, S. (2005). A new healthy sunscreen system for human: Solid lipid nannoparticles as carrier for 3,4,5-trimethoxybenzoylchitinand the improvement by adding vitamin E. International Journal of Biological Macromolecules, 36(1–2), 116–119. doi:10.1016/j.ijbiomac.2005.05.003
  67. NettoMPharm, G., & Jose, J. (2018). Development, characterization, and evaluation of sunscreen cream containing solid lipid nanoparticles of silymarin. Journal of Cosmetic Dermatology, 17(6), 1073–1083. doi:10.1111/jocd.12470
  68. Durán, N., Costa, A. F., Stanisic, D., Bernardes, J. S., & Tasic, L. (2019). Nanotoxicity and dermal application of nanostructured lipid carrier loaded with hesperidin from orange residue. Journal of Physics: Conference Series, 1323(1), 012021. doi:10.1088/1742-6596/1323/1/012021
  69. Sakamoto, J., Annapragada, A., Decuzzi, P., & Ferrari, M. (2007). Antibiological barrier nanovector technology for cancer applications. Expert Opinion on Drug Delivery, 4(4), 359–369. doi:10.1517/17425247.4.4.359
  70. Petersen, R. Nanocrystals for use in topical cosmetic formulations and method of production thereof. U.S. Patent US9114077B2. (August 25, 2015).
  71. Köpke, D., &Pyo, S. M. (2020). Symurban nanocrystals for advanced anti-pollution skincare. Cosmetics, 7(1), 17. doi:10.3390/cosmetics7010017
  72. Tadros, T., Izquierdo, P., Esquena, J., & Solans, C. (2004). Formation and stability of nano-emulsions. Advances in Colloid and Interface Science, 108–109, 303–318. doi:10.1016/j.cis.2003.10.023
  73. Sonneville-Aubrun, O., Yukuyama, M. N., & Pizzino, A. (2021) Chapter 14. Application of nanoemulsions in cosmetics. In Nanoemulsions (pp. 1–2). Cambridge, MA: Academic Press.
  74. Ribeiro, R., Barreto, S., Ostrosky, E., Rocha-Filho, P., Veríssimo, L., & Ferrari, M. (2015). Production and characterization of cosmetic nanoemulsions containing Opuntiaficus-indica (L.) Mill extract as moisturizing agent. Molecules, 20(2), 2492–2509. doi:10.3390/molecules20022492
  75. Fytianos, G., Rahdar, A., &Kyzas, G. Z. (2020). Nanomaterials in cosmetics: Recent updates. Nanomaterials, 10(5), 979. doi:10.3390/nano10050979
  76. Musazzi, U. M., Franzè, S., Minghetti, P., & Casiraghi, A. (2018). Emulsion versus nanoemulsion: How much is the formulative shift critical for a cosmetic product? Drug Delivery and Translational Research, 8(2), 414–421. doi:10.1007/s13346-017-0390-7
  77. Van Tran, V., Loi Nguyen, T., Moon, J. Y., & Lee, Y. C. (2019). Core-shell materials, lipid particles and nanoemulsions, for delivery of active anti-oxidants in cosmetics applications: Challenges and development strategies. Chemical Engineering Journal, 368, 88–114. doi:10.1016/j.cej.2019.02.168
  78. Zhang, H., Zhao, Y., Ying, X., Peng, Z., Guo, Y. K., Yao, X., & Chen, W. (2018). Ellagic acid nanoemulsion in cosmetics: The Preparation and Evaluation of a New Nanoemulsion Method as a Whitening and Antiaging Agent. IEEE Nanotechnology Magazine, 12(1), 14–20. doi:10.1109/MNANO.2017.2780859
  79. Melorose, J., Perroy, R., &Careas, S. (2015). Nanocosmetics and nanomedicines new approaches for skin care, 1. Berlin, Heidelberg, Germany: Springer, ISBN 9788578110796.
  80. Hosseinkhani, B., Callewaert, C., Vanbeveren, N., & Boon, N. (2015). Novel biocompatible nanocapsules for slow release of fragrances on the human skin. New Biotechnology, 32(1), 40–46. doi:10.1016/j.nbt.2014.09.001
  81. Horizon. (2020). Retrieved from https://ec.europa.eu/programmes/horizon2020/en/home
  82. Svarc, F. E., Ranocchia, R. P., Perullini, M., Jobbágy, M., &Aldabe, S. A. (2018). A new route to obtain perfluorodecalinnanocapsules as an oxygen carrier in cosmetic formulations. Journal of Dermatology Study Treat, 1, 1–10. doi:Crossref
  83. Barbosa, T. C., Nascimento, L. É. D., Bani, C., Almeida, T., Nery, M., Santos, R. S., .?.?. Severino, P. (2019). Development, cytotoxicity and eye irritation profile of a new sunscreen formulation based on benzophenone-3-poly("-caprolactone) nanocapsules. Toxics, 7(4), 51. doi:10.3390/toxics7040051
  84. Rigano, L., & Lionetti, N. (2021). Nanobiomaterials in Galenic formulations and cosmetics (pp. 1–2). Norwich, NY: William Andrew Publishing.
  85. Pentek, T., Newenhouse, E., O’Brien, B., & Chauhan, A. S. (2017). Development of a topical resveratrol formulation for commercial applications using dendrimer nanotechnology. Molecules, 22(1), 137. doi:10.3390/molecules22010137
  86. Feltin, C., & Brun, G. Cosmetic composition based on supramolecular polymer and an absorbent filler. U.S. Patent US9000051B2. (April 7, 2015).
  87. Simonnet, J.-T., Sonneville, O., &Legret, S. Nanoemulsion Based on Phosphoric Acid Fatty Acid Esters and Its Uses in the Cosmetics, Dermatological, Pharmaceutical, and/or Ophthalmological Fields. U.S. Patent US6274150B1. (August 14, 2001).
  88. Khan, S., Jain, P., Jain, S., Jain, R., Bhargava, S., & Jain, A. (2018). Topical delivery of erythromycin through cubosomes for acne. Pharmaceutical Nanotechnology, 6(1), 38–47. doi:10.2174/2211738506666180209100222, PubMed: 29424323
  89. El-Komy, M., Shalaby, S., Hegazy, R., Abdel Hay, R., Sherif, S., & Bendas, E. (2017). Assessment of cubosomal alpha lipoic acid gel efficacy for the aging face: A single-blinded, placebo-controlled, right–left comparative clinical study. Journal of Cosmetic Dermatology, 16(3), 358–363. doi:10.1111/jocd.12298.

image
Abhijit Bhosle
Corresponding author

Department of Pharmaceutics, SNJB’s Shriman Sureshdada Jain College of Pharmacy, Chandwad Dist: Nashik, India

image
Dr. Nayana Baste
Co-author

Department of Pharmaceutics, SNJB’s Shriman Sureshdada Jain College of Pharmacy, Chandwad Dist: Nashik, India

Abhijit Bhosle*, Dr. Nayana Baste, Nanotechnology and its Therapeutic and Cosmetic Applications: A Review, Int. J. in Pharm. Sci., 2023, Vol 1, Issue 10, 85-101. https://doi.org/10.5281/zenodo.8428579

More related articles
Formulation and Evaluation of Sustained Release Ta...
Mayur Gokul Jayswal, Vasudev Sharma, Adnan Siddiqui, Raza Khan, S...
Formulation of Dosage Forms with Rabeprazole: Chal...
Aman Kumar Singh, Alka Verma, Ram Sevak Verma, Ramnivas, Suraj Mi...
Phytochemical Analysis and Potential Anthelmintic ...
Manodeep Chakraborty, Rahul Pradhan , Praghya sharma , Nikki kuma...
Formulation And Evaluation Of Herbal Anti Dandruff Shampoo...
Rashmi C., Sariful Islam, Ashraful Anowar, Asraful Ambiya, Mohammad Rafid, Shiyas M. P., ...
Formulation And Evaluation of Gel Containing Zinc Oxide Nanoparticle of Ketocona...
Vasudev Jitendra Sharma, Mayur Gokul Jayswal, Raza Khan, Dr. Mohd. Rehan Deshmukh, Prof. (Dr.) G. J....
A Comparative Study Evaluating The Level Of Urea And Creatinine In Males And Fem...
Zaman subhi madlool, Ahmed aziz, Dmoaa majid nasar, Doaa hazem mohammed , ...
Related Articles
Post COVID-19: Analysis Of Reasons For Mask Wearing Intention...
Prabhusaran Nagarajan, Revwathy Subramanian, Vinitha Pandiyan, Clitus Amalraj , Bharath Ragul Mathai...
A Review On Nanoparticles...
Sarika Jha, Arti kori, Shivanand M. Patil, ...
A Comprehensive Review Clinical Trials Phase IV...
Sakshi K. Loya, Lakhan D. Baheti, ...
Evaluation And Management Of Urolithiasis...
Pittu Vishnu Priya, Palle Sai Sharanya, Nanubothula Kushala Yadav, Gangavarapu Hari Priya, Kurva Nav...
Formulation and Evaluation of Sustained Release Tablet of an AntiDiabetic Drug V...
Mayur Gokul Jayswal, Vasudev Sharma, Adnan Siddiqui, Raza Khan, Shaikh Aaqueeb Ahmed, Afsar Shaikh, ...
More related articles
Formulation and Evaluation of Sustained Release Tablet of an AntiDiabetic Drug V...
Mayur Gokul Jayswal, Vasudev Sharma, Adnan Siddiqui, Raza Khan, Shaikh Aaqueeb Ahmed, Afsar Shaikh, ...
Formulation of Dosage Forms with Rabeprazole: Challenges and Future Perspectives...
Aman Kumar Singh, Alka Verma, Ram Sevak Verma, Ramnivas, Suraj Mishra, Pranjul Verma, ...
Phytochemical Analysis and Potential Anthelmintic activity of Chenopodium ambros...
Manodeep Chakraborty, Rahul Pradhan , Praghya sharma , Nikki kumari Gupta, Samir Chouhan, Nowsad SK,...
Formulation and Evaluation of Sustained Release Tablet of an AntiDiabetic Drug V...
Mayur Gokul Jayswal, Vasudev Sharma, Adnan Siddiqui, Raza Khan, Shaikh Aaqueeb Ahmed, Afsar Shaikh, ...
Formulation of Dosage Forms with Rabeprazole: Challenges and Future Perspectives...
Aman Kumar Singh, Alka Verma, Ram Sevak Verma, Ramnivas, Suraj Mishra, Pranjul Verma, ...
Phytochemical Analysis and Potential Anthelmintic activity of Chenopodium ambros...
Manodeep Chakraborty, Rahul Pradhan , Praghya sharma , Nikki kumari Gupta, Samir Chouhan, Nowsad SK,...