View Article

  • Photocatalytic Regioselective C-H Functionalization of Arenes: Advances, Mechanisms, and Applications

  • St. Xavier’s College, Ahmedabad, Gujrat, India.

Abstract

The direct functionalization of aromatic C-H bonds has emerged as one of the most transformative strategies in modern organic synthesis, offering atom-economical approaches to molecular complexity. Photoredox catalysis has revolutionized this field by enabling selective C-H bond activation under mild reaction conditions through visible light irradiation. This review provides a comprehensive overview of recent advances in photocatalytic regioselective C-H functionalization of arenes, with particular emphasis on achieving ortho-, meta-, and para-selectivity. We discuss the mechanistic foundations underlying these transformations, including the role of transition metal catalysis, organic photocatalysts, and dual catalytic systems. The review covers major functional group installations including amination, oxygenation, cyanation, and other key transformations, highlighting their synthetic utility and mechanistic insights. Future directions and challenges in developing more efficient and selective photocatalytic systems are also addressed.

Keywords

Photoredox catalysis, C-H functionalization, regioselectivity, arene activation, dual catalysis

Introduction

The selective functionalization of carbon-hydrogen (C-H) bonds represents one of the most challenging and rewarding areas of synthetic organic chemistry (1,2). Among the various C-H bonds present in organic molecules, aromatic C-H bonds offer unique opportunities for regioselective modification due to their distinct electronic properties and the ability to exploit directing effects (3,4). Traditional approaches to arene functionalization have relied heavily on prefunctionalized substrates, such as aryl halides or organometallic reagents, which require multiple synthetic steps and generate considerable waste (5,6).

The advent of photoredox catalysis has fundamentally changed the landscape of C-H functionalization chemistry (7,8). By harnessing the energy of visible light, photoredox catalysts can generate highly reactive intermediates under mild conditions, enabling transformations that were previously challenging or impossible (9,10). The ability to precisely control regioselectivity in aromatic C-H functionalization has been a particular focus of recent research efforts, with significant advances in achieving ortho-, meta-, and para-selective transformations (11,12).

The merger of photoredox catalysis with transition metal catalysis, termed metallaphotoredox catalysis, has emerged as a particularly powerful platform for C-H functionalization (13,14). This dual catalytic approach combines the unique reactivity of photoexcited states with the bond-forming capabilities of transition metals, often resulting in enhanced selectivity and expanded substrate scope (15,16).

Additionally, purely organic photoredox systems have demonstrated remarkable efficiency in promoting various C-H functionalization reactions, offering sustainable alternatives to metal-based catalysts (17,18).

2. Mechanistic Foundations of Photocatalytic C-H Functionalization

2.1 Fundamental Photocatalytic Processes

Photocatalytic C-H functionalization typically proceeds through single-electron transfer (SET) processes initiated by photoexcitation of the catalyst (19,20). Upon absorption of visible light, photocatalysts undergo electronic transitions to excited states that possess dramatically altered redox properties compared to their ground states (21). These excited state species can act as powerful single-electron oxidants or reductants, depending on their electronic configuration (22,23).

The general mechanism involves initial oxidation of the aromatic substrate to form an arene cation radical, which serves as a key electrophilic intermediate (24,25). This cation radical can then undergo nucleophilic attack by various reagents, followed by subsequent oxidation and rearomatization to yield the functionalized product (26). The regioselectivity of these transformations is governed by the electronic properties of the arene cation radical and the nature of the nucleophile (27,28).

2.2 Transition Metal-Photocatalyst Synergy

The combination of transition metal catalysts with photocatalysts has opened new mechanistic pathways for C-H functionalization (29,30). In these dual catalytic systems, the photocatalyst and transition metal can interact through various modes, including energy transfer, electron transfer, and cooperative substrate activation (31,32). Palladium-based systems have been particularly successful, with the metal catalyst facilitating C-H activation while the photocatalyst provides the driving force for oxidative processes (33,34).

Recent mechanistic studies have revealed that these systems often operate through Pd(II)/Pd(III)/Pd(IV) catalytic cycles, in contrast to traditional thermal processes that typically involve Pd(II)/Pd(IV) pathways (35). The involvement of odd-electron Pd(III) intermediates provides access to radical-type reactivity while maintaining the selectivity advantages of organometallic catalysis (36).

3. Regioselective Strategies in Photocatalytic C-H Functionalization

3.1 Ortho-Selective Functionalization

Ortho-selective C-H functionalization has been extensively developed using directing group strategies (37,38). The presence of coordinating functional groups such as pyridines, quinolines, and carboxylates can direct the metal catalyst to the ortho position, enabling highly selective transformations (39,40). Under photoredox conditions, these directing group-mediated processes often proceed at significantly lower temperatures than their thermal counterparts (41,42).

Gillespie and Phipps demonstrated an innovative approach to ortho-selective amination using noncovalent interactions between anionic substrates and incoming radical cations (43). Their system utilized sulfamate-protected anilines to achieve excellent ortho selectivity through a combination of electrostatic interactions and hydrogen bonding (44). This work highlighted the potential for controlling regioselectivity through careful design of substrate-catalyst interactions.

3.2 Meta-Selective Functionalization

Meta-selective C-H functionalization represents one of the most challenging aspects of aromatic chemistry due to the remote nature of the targeted position (45,46). Traditional electrophilic aromatic substitution reactions typically favor ortho and para positions, making meta-selective transformations particularly difficult to achieve (47).

Ali, Saha, Ge, and Maiti developed a highly effective photoinduced meta-selective C-H oxygenation protocol using dual photoredox and palladium catalysis (48). Their system achieved excellent meta selectivity (>25:1) on phenylacetic acids and biphenyl derivatives through a mechanism involving Pd(II)/Pd(III)/Pd(IV) intermediacy (49). The use of directing templates enabled precise control over the site of functionalization, with the protocol being amenable to various substrate classes including sulfonyls and phosphonyl-tethered arenes (50).

The mechanistic studies revealed that the photoredox catalyst plays a crucial role in generating acetoxy radicals from PhI(OAc)?, which then coordinate with palladium intermediates to promote the desired transformation (51). This work demonstrated the power of combining photocatalysis with transition metal catalysis to achieve transformations that are difficult to accomplish using either approach alone.

3.3 Para-Selective Functionalization

Para-selective C-H functionalization has been successfully achieved through both electronic control and steric effects (52,53). The inherent electronic properties of many aromatic substrates favor para-substitution in electrophilic processes, making this regioselectivity often more straightforward to achieve than meta-selectivity (54).

Romero, Margrey, Tay, and Nicewicz reported a breakthrough in site-selective arene C-H amination using organic photoredox catalysis (55). Their system, employing an acridinium photooxidant and TEMPO as a co-catalyst, achieved excellent para selectivity with a wide range of aromatic substrates (56). The protocol demonstrated remarkable functional group tolerance and was successfully applied to late-stage functionalization of pharmaceutical compounds (57).

4. Functional Group Installation via Photocatalytic C-H Functionalization

4.1 C-H Amination

The direct installation of nitrogen functionality into aromatic C-H bonds represents one of the most valuable transformations in synthetic chemistry (58,59). Photocatalytic approaches have enabled unprecedented mild conditions for these challenging transformations (60).

The mechanism of photocatalytic C-H amination typically involves generation of arene cation radicals followed by nucleophilic attack by nitrogen-containing reagents (61,62). Romero and coworkers demonstrated that their acridinium-based system could promote amination with both azole nucleophiles and ammonia equivalents, providing direct access to anilines without the need for harsh reduction conditions (63).

Pistritto, Liu, and Nicewicz conducted detailed mechanistic investigations into the amination of unactivated arenes, revealing the importance of cation radical accelerated nucleophilic aromatic substitution (CRA-SNAr) pathways (64). Their studies showed that the reaction proceeds through rate-limiting nucleophilic addition to arene cation radicals, with subsequent deprotonation and rearomatization completing the transformation (65).

The development of predictive models for site-selectivity has been crucial for expanding the synthetic utility of these methods. Margrey, McManus, Bonazzi, Zecri, and Nicewicz developed computational approaches based on natural population analysis (NPA) to predict the most electrophilic sites in arene cation radicals (66). Their model successfully predicted regioselectivity across diverse heterocyclic substrates, providing valuable guidance for synthetic applications (67).

4.2 C-H Cyanation

The direct installation of cyano groups into aromatic C-H bonds provides access to versatile synthetic intermediates that can be readily converted to various functional groups (68,69). McManus and Nicewicz developed an elegant organic photoredox-catalyzed system for direct C-H cyanation using trimethylsilyl cyanide as the cyanide source (70).

Their protocol utilized an acridinium photocatalyst to generate arene cation radicals, which then underwent nucleophilic attack by cyanide anions (71). The use of buffered aqueous conditions was crucial for maintaining appropriate cyanide concentrations while avoiding catalyst decomposition (72). The method demonstrated excellent functional group tolerance and was successfully applied to complex pharmaceutical intermediates.

4.3 C-H Oxygenation

The introduction of oxygen functionality into aromatic systems is fundamental to medicinal chemistry and materials science (73,74). Photocatalytic approaches to C-H oxygenation have enabled access to complex oxygenated aromatics under mild conditions (75).

The meta-selective oxygenation protocol developed by Ali and coworkers represents a significant advance in this area (76). Their dual photoredox-palladium system achieved unprecedented selectivity through careful optimization of reaction conditions and catalyst combinations (77). The protocol's broad substrate scope and excellent functional group tolerance make it particularly valuable for pharmaceutical applications (78).

5. Catalyst Design and Development

5.1 Transition Metal Photocatalysts

Ruthenium and iridium complexes have been the workhorses of photoredox catalysis due to their favorable photophysical properties (79,80). These complexes typically exhibit long-lived triplet excited states with appropriate redox potentials for substrate activation (81). However, their high cost and limited availability have driven efforts to develop more sustainable alternatives (82).

Recent advances in palladium photocatalysis have shown that this more abundant metal can serve dual roles as both a photoabsorber and a catalyst for C-H activation (83,84). These systems often operate through ligand-to-metal charge transfer (LMCT) processes that generate reactive palladium species capable of promoting C-H functionalization (85).

5.2 Organic Photocatalysts

Organic photocatalysts offer several advantages over metal-based systems, including lower cost, greater availability, and often superior photostability (86,87). Acridinium salts have emerged as particularly effective organic photooxidants due to their high excited-state reduction potentials (88).

The design of improved acridinium catalysts has focused on enhancing stability while maintaining high oxidizing power (89). Structural modifications to prevent nucleophilic attack on the catalyst framework have led to more robust systems with improved turnover numbers (90).

5.3 Dual Catalytic Systems

The combination of photoredox catalysts with transition metal catalysts has proven to be one of the most powerful approaches for C-H functionalization (91,92). These systems benefit from the complementary reactivity of each catalyst type, often enabling transformations that are not accessible using either catalyst alone (93).

Careful optimization of catalyst loadings, reaction conditions, and substrate ratios is crucial for achieving optimal performance in dual catalytic systems (94). The relative redox potentials of the substrates and catalysts must be carefully matched to ensure productive electron transfer processes (95).

6. Substrate Scope and Limitations

6.1 Electronic Requirements

The success of photocatalytic C-H functionalization is highly dependent on the electronic properties of the aromatic substrate (96,97). Electron-rich aromatics are generally more amenable to oxidation by photoredox catalysts, making them preferred substrates for many transformations (98). However, recent advances have expanded the scope to include more electron-deficient systems through careful catalyst selection and reaction optimization (99).

6.2 Functional Group Compatibility

One of the major advantages of photocatalytic C-H functionalization is the excellent functional group tolerance exhibited by many systems (100,101). The mild reaction conditions typically employed help preserve sensitive functionality that might be incompatible with harsher thermal processes (102). However, certain functional groups, particularly those with low oxidation potentials, can compete with the intended substrate for oxidation by the photocatalyst (103).

6.3 Substrate Classes

The methodology has been successfully applied to a wide range of aromatic substrates, including simple benzene derivatives, heterocycles, and complex natural product frameworks (104,105). Each substrate class presents unique challenges and opportunities for selective functionalization (106).

7. Applications in Synthesis

7.1 Pharmaceutical Chemistry

The pharmaceutical industry has embraced photocatalytic C-H functionalization as a tool for late-stage derivatization and library synthesis (107,108). The ability to selectively modify complex drug molecules without extensive protecting group chemistry has proven particularly valuable (109).

Several successful applications have been reported in the synthesis of marketed pharmaceuticals and their analogs (110,111). The mild conditions and high selectivity of many photocatalytic systems make them ideal for modifying sensitive drug frameworks (112).

7.2 Natural Product Synthesis

Photocatalytic C-H functionalization has found increasing use in natural product synthesis, where it can provide efficient routes to complex molecular architectures (113,114). The ability to achieve selective functionalization of advanced intermediates has streamlined several total synthesis efforts (115).

7.3 Materials Chemistry

The application of photocatalytic C-H functionalization in materials chemistry has opened new avenues for the synthesis of functional organic materials (116,117). Selective modification of aromatic frameworks can tune electronic and optical properties for specific applications (118).

8. Future Directions and Challenges

8.1 Catalyst Development

The development of more efficient and selective photocatalysts remains a key priority for the field (119,120). Efforts are ongoing to design catalysts with improved photostability, broader substrate scope, and enhanced selectivity (121). The incorporation of artificial intelligence and machine learning approaches may accelerate catalyst discovery and optimization (122).

8.2 Mechanistic Understanding

Continued mechanistic studies will be crucial for rational development of new transformations and improved selectivity (123,124). Advanced spectroscopic techniques and computational methods are providing unprecedented insights into reaction mechanisms (125).

8.3 Sustainability Considerations

The development of more sustainable photocatalytic systems, including the use of abundant metals and renewable light sources, represents an important future direction (126,127). Life cycle analyses of photocatalytic processes will become increasingly important as the field matures (128).

8.4 Scalability

The translation of photocatalytic C-H functionalization from laboratory to industrial scale presents both challenges and opportunities (129,130). Engineering solutions for efficient light penetration and heat management will be crucial for large-scale applications (131).

CONCLUSIONS

Photocatalytic regioselective C-H functionalization of arenes has emerged as one of the most transformative areas of modern synthetic chemistry. The ability to achieve selective modification of aromatic C-H bonds under mild conditions has opened new possibilities for efficient synthesis of complex molecules. The development of both transition metal and organic photocatalyst systems has provided complementary approaches to these challenging transformations.

The mechanistic insights gained from recent studies have revealed the crucial role of arene cation radicals as key intermediates and have enabled the development of predictive models for regioselectivity. The successful application of these methods to pharmaceutical synthesis, natural product chemistry, and materials science demonstrates their broad utility and impact.

Looking forward, continued advances in catalyst design, mechanistic understanding, and process optimization will further expand the scope and utility of photocatalytic C-H functionalization. The integration of computational methods and artificial intelligence approaches may accelerate these developments and enable the design of increasingly sophisticated selective transformations.

REFERENCES

  1. Lyons, T. W.; Sanford, M. S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev. 2010, 110, 1147-1169.
  2. Wencel-Delord, J.; Glorius, F. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 2013, 5, 369-375.
  3. Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. The medicinal chemist's toolbox for late-stage functionalization of drug-like molecules. Chem. Soc. Rev. 2016, 45, 546-576.
  4. McMurray, L.; O'Hara, F.; Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C-H bond functionalization. Chem. Soc. Rev. 2011, 40, 1885-1898.
  5. Hartwig, J. F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res. 2008, 41, 1534-1544.
  6. Ruiz-Castillo, P.; Buchwald, S. L. Applications of palladium-catalyzed C-N cross-coupling reactions. Chem. Rev. 2016, 116, 12564-12649.
  7. Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 2013, 113, 5322-5363.
  8. Narayanam, J. M. R.; Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 2011, 40, 102-113.
  9. Romero, N. A.; Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 2016, 116, 10075-10166.
  10. Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 2016, 81, 6898-6926.
  11. Hu, J.; Pradhan, S.; Waiba, S.; Das, S. Photocatalytic regioselective C-H bond functionalizations in arenes. Chem. Sci. 2025, 16, 1041-1070.
  12. Douglas, N. H.; Nicewicz, D. A. Photoredox-catalyzed C-H functionalization reactions. Chem. Rev. 2022, 122, 1925-2016.
  13. Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; Buksh, B. F.; Edwards, G. A.; Frye, L. I.; Garry, O. L.; Lavagnino, M. N.; Li, B. X.; Liang, Y.; et al. Metallaphotoredox: The merger of photoredox and transition metal catalysis. Chem. Rev. 2022, 122, 1485-1542.
  14. Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 2017, 1, 0052.
  15. Fabry, D. C.; Rueping, M. Merging visible light photoredox catalysis with metal-catalyzed C-H activations: on the role of oxygen and superoxide ions as oxidants. Acc. Chem. Res. 2016, 49, 1969-1979.
  16. Guilleard, L.; Wencel-Delord, J. When metal-catalyzed C-H functionalization meets visible-light photocatalysis. Beilstein J. Org. Chem. 2020, 16, 1754-1804.
  17. Margrey, K. A.; Nicewicz, D. A. A general approach to catalytic alkene anti-Markovnikov hydrofunctionalization reactions via acridinium photoredox catalysis. Acc. Chem. Res. 2016, 49, 1997-2006.
  18. Kärkäs, M. D. Photocatalytic approaches for C-H functionalization and C-N bond formation. Chem. Soc. Rev. 2018, 47, 5786-5865.
  19. Fukuzumi, S.; Ohkubo, K. Organic synthetic transformations using organic photoredox catalysts. Org. Biomol. Chem. 2014, 12, 6059-6071.
  20. Ohkubo, K.; Mizushima, K.; Iwata, R.; Fukuzumi, S. Selective photocatalytic aerobic bromination with hydrogen bromide via an electron-transfer state of 9-mesityl-10-methylacridinium ion. Chem. Sci. 2011, 2, 715-722.
  21. Balzani, V.; Ceroni, P.; Juris, A. Photochemistry and Photophysics: Concepts, Research, Applications; Wiley-VCH: Weinheim, 2014.
  22. Cismesia, M. A.; Yoon, T. P. Characterizing chain processes in visible light photoredox catalysis. Chem. Sci. 2015, 6, 5426-5434.
  23. Hatchard, C. G.; Parker, C. A. A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proc. R. Soc. London, Ser. A 1956, 235, 518-536.
  24. Schmittel, M.; Burghart, A. Understanding reactivity patterns of radical cations. Angew. Chem. Int. Ed. 1997, 36, 2550-2589.
  25. Zweig, A.; Hodgson, W. G.; Jura, W. H. Electrochemical studies of some azaaromatics. Kinetic evidence for proton transfer reactions. J. Am. Chem. Soc. 1964, 86, 4124-4129.
  26. Yoshida, J.-I.; Kataoka, K.; Horcajada, R.; Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 2008, 108, 2265-2299.
  27. Morofuji, T.; Shimizu, A.; Yoshida, J.-I. Electrochemical C-H amination: synthesis of aromatic primary amines via N-arylsulfonamides. J. Am. Chem. Soc. 2013, 135, 5000-5003.
  28. Morofuji, T.; Shimizu, A.; Yoshida, J.-I. Direct C-N coupling of imidazoles with aromatic and benzylic compounds via electrochemically generated arene cation radicals. J. Am. Chem. Soc. 2014, 136, 4496-4499.
  29. Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 2016, 116, 10035-10074.
  30. Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Dual catalysis sees the light: combining photoredox with organo-, acid, and transition-metal catalysis. Chem.-Eur. J. 2014, 20, 3874-3886.
  31. Brennan, P.; George, M. W.; Jina, O. S.; Long, C.; McKenna, J.; Pryce, M. T.; Sun, X.-Z.; Vuong, K. Q. UV and visible light switchable CO release from Mn?(CO)?? using air-stable [Ru(bpy)?(dppz)]²?. Organometallics 2008, 27, 3671-3680.
  32. Levin, M. D.; Kim, S.; Toste, F. D. Photoredox catalysis unlocks single-electron elementary steps in transition metal catalyzed cross-coupling. ACS Cent. Sci. 2016, 2, 293-301.
  33. Saha, A.; Guin, S.; Ali, W.; Bhattacharya, T.; Sasmal, S.; Goswami, N.; Prakash, G.; Sinha, S. K.; Chandrashekar, H. B.; Panda, S.; et al. Photoinduced regioselective olefination of arenes at proximal and distal sites. J. Am. Chem. Soc. 2022, 144, 1929-1940.
  34. Korvorapun, K.; Struwe, J.; Kuniyil, R.; Zangarelli, A.; Casnati, A.; Waeterschoot, M.; Ackermann, L. Photo-induced ruthenium-catalyzed C-H arylations at ambient temperature. Angew. Chem. Int. Ed. 2020, 59, 18103-18109.
  35. Ali, W.; Saha, A.; Ge, H.; Maiti, D. Photoinduced meta-selective C-H oxygenation of arenes. JACS Au 2023, 3, 1790-1799.
  36. Cheung, K. P. S.; Sarkar, S.; Gevorgyan, V. Visible light-induced transition metal catalysis. Chem. Rev. 2022, 122, 1543-1625.
  37. Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord, J.; Besset, T.; et al. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem. Soc. Rev. 2018, 47, 6603-6743.
  38. Dutta, U.; Maiti, S.; Bhattacharya, T.; Maiti, D. Arene diversification through distal C(sp²)-H functionalization. Science 2021, 372, eabd5992.
  39. Maji, A.; Bhaskararao, B.; Singha, S.; Sunoj, R. B.; Maiti, D. Directing group assisted meta-hydroxylation by C-H activation. Chem. Sci. 2016, 7, 3147-3153.
  40. Li, J.; Warratz, S.; Zell, D.; De Sarkar, S.; Ishikawa, E. E.; Ackermann, L. Versatile ruthenium(II)-catalyzed C-H cyanations of (hetero)arenes. J. Am. Chem. Soc. 2015, 137, 13894-13901.
  41. Zhou, C.; Li, P.; Zhu, X.; Wang, L. Merging photoredox with palladium catalysis: decarboxylative ortho-acylation of acetanilides with α-oxocarboxylic acids under mild reaction conditions. Org. Lett. 2015, 17, 6198-6201.
  42. Wang, H.; Li, T.; Hu, D.; Tong, X.; Zheng, L.; Xia, C. Acylation of arenes with aldehydes through dual C-H activations by merging photocatalysis and palladium catalysis. Org. Lett. 2021, 23, 3772-3776.
  43. Gillespie, J. E.; Morrill, C.; Phipps, R. J. Regioselective radical arene amination for the concise synthesis of ortho-phenylenediamines. J. Am. Chem. Soc. 2021, 143, 9355-9360.
  44. Mihai, M. T.; Williams, B. D.; Phipps, R. J. Para-selective C-H borylation of common arene building blocks enabled by ion-pairing with a bulky countercation. J. Am. Chem. Soc. 2019, 141, 15477-15482.
  45. Leitch, J. A.; Bhonoah, Y.; Frost, C. G. Beyond C2 and C3: transition-metal-catalyzed C-H functionalization of indole. ACS Catal. 2017, 7, 5618-5627.
  46. Dutta, U.; Modak, A.; Bhaskararao, B.; Bera, M.; Bag, S.; Mondal, A.; Lupton, D. W.; Sunoj, R. B.; Maiti, D. Catalytic arene meta-C-H functionalization exploiting a quinoline-based template. ACS Catal. 2017, 7, 3162-3168.
  47. Yang, J. Palladium-catalyzed meta-selective C-H bond functionalization. Org. Biomol. Chem. 2015, 13, 1930-1941.
  48. Ali, W.; Saha, A.; Ge, H.; Maiti, D. Photoinduced meta-selective C-H oxygenation of arenes. JACS Au 2023, 3, 1790-1799.
  49. Wang, P.; Farmer, M. E.; Huo, X.; Jain, P.; Shen, P.-X.; Ishoey, M.; Bradner, J. E.; Wisniewski, S. R.; Eastgate, M. D.; Yu, J.-Q. Ligand-promoted meta-C-H arylation of anilines, phenols, and heterocycles. J. Am. Chem. Soc. 2016, 138, 9269-9276.
  50. Bera, M.; Sahoo, S. K.; Maiti, D. Room-temperature meta-functionalization: Pd(II)-catalyzed synthesis of 1,3,5-trialkenyl arene and meta-hydroxylated olefin. ACS Catal. 2016, 6, 3575-3579.
  51. Jayarajan, R.; Das, J.; Bag, S.; Chowdhury, R.; Maiti, D. Diverse meta-C-H functionalization of arenes across different linker lengths. Angew. Chem. Int. Ed. 2018, 57, 7659-7663.
  52. Boursalian, G. B.; Ham, W. S.; Mazzotti, A. R.; Ritter, T. Charge-transfer-directed radical substitution enables para-selective C-H functionalization. Nat. Chem. 2016, 8, 810-815.
  53. Hoque, M. E.; Bisht, R.; Haldar, C.; Chattopadhyay, B. Noncovalent interactions in Ir-catalyzed C-H activation: L-shaped ligand for para-selective borylation of aromatic esters. J. Am. Chem. Soc. 2017, 139, 7745-7748.
  54. Ruffoni, A.; Juliá, F.; Svejstrup, T. D.; McMillan, A. J.; Douglas, J. J.; Leonori, D. Practical and regioselective amination of arenes using alkyl amines. Nat. Chem. 2019, 11, 426-433.
  55. Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A. Site-selective arene C-H amination via photoredox catalysis. Science 2015, 349, 1326-1330.
  56. Margrey, K. A.; Levens, A.; Nicewicz, D. A. Direct aryl C-H amination with primary amines using organic photoredox catalysis. Angew. Chem. Int. Ed. 2017, 56, 15644-15648.
  57. Margrey, K. A.; McManus, J. B.; Bonazzi, S.; Zecri, F.; Nicewicz, D. A. Predictive model for site-selective aryl and heteroaryl C-H functionalization via organic photoredox catalysis. J. Am. Chem. Soc. 2017, 139, 11288-11299.
  58. Park, Y.; Kim, Y.; Chang, S. Transition metal-catalyzed C-H amination: scope, mechanism, and applications. Chem. Rev. 2017, 117, 9247-9301.
  59. Jiao, J.; Murakami, K.; Itami, K. Catalytic methods for aromatic C-H amination: an ideal strategy for nitrogen-based functional molecules. ACS Catal. 2016, 6, 610-633.
  60. Murakami, K.; Perry, G. J. P.; Itami, K. Aromatic C-H amination: a radical approach for adding new functions into biology- and materials-oriented aromatics. Org. Biomol. Chem. 2017, 15, 6071-6075.
  61. Boursalian, G. B.; Ngai, M.-Y.; Hojczyk, K. N.; Ritter, T. Pd-catalyzed aryl C-H imidation with arene as the limiting reagent. J. Am. Chem. Soc. 2013, 135, 13278-13281.
  62. Allen, L. J.; Cabrera, P. J.; Lee, M.; Sanford, M. S. N-Acyloxyphthalimides as nitrogen radical precursors in the visible light photocatalyzed room temperature C-H amination of arenes and heteroarenes. J. Am. Chem. Soc. 2014, 136, 5607-5610.
  63. Vo, G. D.; Hartwig, J. F. Palladium-catalyzed coupling of ammonia with aryl chlorides, bromides, iodides, and sulfonates: a general method for the preparation of primary arylamines. J. Am. Chem. Soc. 2009, 131, 11049-11061.
  64. Pistritto, V. A.; Liu, S.; Nicewicz, D. A. Mechanistic investigations into amination of unactivated arenes via cation radical accelerated nucleophilic aromatic substitution. J. Am. Chem. Soc. 2022, 144, 15118-15131.
  65. Tay, N. E. S.; Nicewicz, D. A. Cation radical accelerated nucleophilic aromatic substitution via organic photoredox catalysis. J. Am. Chem. Soc. 2017, 139, 16100-16104.
  66. Margrey, K. A.; McManus, J. B.; Bonazzi, S.; Zecri, F.; Nicewicz, D. A. Predictive model for site-selective aryl and heteroaryl C-H functionalization via organic photoredox catalysis. J. Am. Chem. Soc. 2017, 139, 11288-11299.
  67. Roth, H. G.; Romero, N. A.; Nicewicz, D. A. Experimental and calculated electrochemical potentials of common organic molecules for applications to single-electron redox chemistry. Synlett 2016, 27, 714-723.
  68. McManus, J. B.; Nicewicz, D. A. Direct C-H cyanation of arenes via organic photoredox catalysis. J. Am. Chem. Soc. 2017, 139, 2880-2883.
  69. Holmberg-Douglas, N.; Nicewicz, D. A. Arene cyanation via cation-radical accelerated-nucleophilic aromatic substitution. Org. Lett. 2019, 21, 7114-7118.
  70. McManus, J. B.; Nicewicz, D. A. Direct C-H cyanation of arenes via organic photoredox catalysis. J. Am. Chem. Soc. 2017, 139, 2880-2883.
  71. Sundermeier, M.; Zapf, A.; Beller, M. A convenient synthesis of arylnitriles using potassium hexacyanoferrate(II) and palladium catalysts. Angew. Chem. Int. Ed. 2003, 42, 1661-1664.
  72. Anbarasan, P.; Schareina, T.; Beller, M. Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: synthesis of benzonitriles. Chem. Soc. Rev. 2011, 40, 5049-5067.
  73. Li, G.; Leow, D.; Wan, L.; Yu, J.-Q. Olefin synthesis via Pd(II)-catalyzed oxidative C-H alkenylation of arenes. Angew. Chem. Int. Ed. 2013, 52, 1245-1247.
  74. Rueping, M.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C.; Leonori, D.; Vila, C. Dual catalysis: combination of photocatalysis with Lewis acid catalysis for direct C-H functionalization. Chem. Eur. J. 2012, 18, 5170-5174.
  75. Fabry, D. C.; Zoller, J.; Raja, S.; Rueping, M. Combining rhodium and photoredox catalysis for C-H functionalizations of arenes: oxidative Heck reactions with visible light. Angew. Chem. Int. Ed. 2014, 53, 10228-10231.
  76. Ali, W.; Saha, A.; Ge, H.; Maiti, D. Photoinduced meta-selective C-H oxygenation of arenes. JACS Au 2023, 3, 1790-1799.
  77. Wang, C.-S.; Dixneuf, P. H.; Soulé, J.-F. Photoredox catalysis for building C-C bonds from C(sp²)-H bonds. Chem. Rev. 2018, 118, 7532-7585.
  78. Shee, M.; Singh, N. D. P. Cooperative photoredox and palladium catalysis: recent advances in various functionalization reactions. Catal. Sci. Technol. 2021, 11, 742-767.
  79. Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A. Ru(II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord. Chem. Rev. 1988, 84, 85-277.
  80. Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletti, F. Photochemistry and photophysics of coordination compounds: iridium. Top. Curr. Chem. 2007, 281, 143-203.
  81. Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.; Balzani, V. Photochemistry and photophysics of coordination compounds: ruthenium. Top. Curr. Chem. 2007, 280, 117-214.
  82. König, B. Photocatalysis in organic synthesis - past, present, and future. Eur. J. Org. Chem. 2017, 1979-1981.
  83. Parasram, M.; Gevorgyan, V. Visible light-induced transition metal-catalyzed transformations: beyond conventional photosensitizers. Chem. Soc. Rev. 2017, 46, 6227-6240.
  84. Chuentragool, P.; Kurandina, D.; Gevorgyan, V. Catalysis with palladium complexes photoexcited by visible light. Angew. Chem. Int. Ed. 2019, 58, 11586-11598.
  85. Zhou, W.-J.; Cao, G.-M.; Shen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Suna, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Visible-light-driven palladium-catalyzed radical alkylation of C-H bonds with unactivated alkyl bromides. Angew. Chem. Int. Ed. 2017, 56, 15683-15687.
  86. Ghosh, I.; Marzo, L.; Das, A.; Shaikh, R.; König, B. Visible light mediated photoredox catalytic arylation reactions. Acc. Chem. Res. 2016, 49, 1566-1577.
  87. Hari, D. P.; König, B. Synthetic applications of eosin Y in photoredox catalysis. Chem. Commun. 2014, 50, 6688-6699.
  88. Benniston, A. C.; Harriman, A. Artificial photosynthesis. Mater. Today 2008, 11, 26-34.
  89. Fukuzumi, S.; Ohkubo, K.; Suenobu, T. Long-lived charge separation and applications in artificial photosynthesis. Acc. Chem. Res. 2014, 47, 1455-1464.
  90. Pistritto, V. A.; Schutzbach-Horton, M. E.; Nicewicz, D. A. Nucleophilic aromatic substitution of unactivated fluoroarenes enabled by organic photoredox catalysis. J. Am. Chem. Soc. 2020, 142, 17187-17194.
  91. Mastandrea, M. M.; Pericàs, M. A. Photoredox dual catalysis: a fertile playground for the discovery of new reactivities. Eur. J. Inorg. Chem. 2021, 3421-3431.
  92. Lang, S. B.; O'Nele, K. M.; Tunge, J. A. Decarboxylative allylation of amino alkanoic acids and esters via dual catalysis. J. Am. Chem. Soc. 2014, 136, 13606-13609.
  93. Zoller, J.; Fabry, D. C.; Ronge, M. A.; Rueping, M. Synthesis of indoles using visible light: photoredox catalysis for palladium-catalyzed C-H activation. Angew. Chem. Int. Ed. 2014, 53, 13264-13268.
  94. Le, C.; Chen, T. Q.; Liang, T.; Zhang, P.; MacMillan, D. W. C. A radical approach to the copper oxidative addition problem: trifluoromethylation of bromoarenes. Science 2018, 360, 1010-1014.
  95. Huang, H.-M.; Bellotti, P.; Erchinger, J. E.; Paulisch, T. O.; Glorius, F. Radical carbonyl umpolung arylation via dual nickel catalysis. J. Am. Chem. Soc. 2022, 144, 1899-1909.
  96. Ohkubo, K.; Fujimoto, A.; Fukuzumi, S. Photocatalytic monofluorination of benzene by fluoride via photoinduced electron transfer with 3-cyano-1-methylquinolinium. J. Phys. Chem. A 2013, 117, 10719-10725.
  97. Riener, M.; Nicewicz, D. A. Synthesis of cyclobutane lignans via an organic photoredox catalyzed [2+2] cycloaddition. Chem. Sci. 2013, 4, 2625-2629.
  98. Nicewicz, D. A.; Nguyen, T. M. Recent applications of organic dyes as photoredox catalysts in organic synthesis. ACS Catal. 2014, 4, 355-360.
  99. Venditto, N. J.; Nicewicz, D. A. Cation radical-accelerated nucleophilic aromatic substitution for amination of alkoxyarenes. Org. Lett. 2020, 22, 4817-4822.
  100. Tay, N. E. S.; Chen, W.; Levens, A.; Pistritto, V. A.; Huang, Z.; Wu, Z.; Li, Z.; Nicewicz, D. A. ¹?F- and ¹?F-arene deoxyfluorination via organic photoredox-catalysed polarity-reversed nucleophilic aromatic substitution. Nat. Catal. 2020, 3, 734-742.
  101. Margrey, K. A.; Nicewicz, D. A. A general approach to catalytic alkene anti-Markovnikov hydrofunctionalization reactions via acridinium photoredox catalysis. Acc. Chem. Res. 2016, 49, 1997-2006.
  102. Chen, W.; Huang, Z.; Tay, N. E. S.; Giglio, B.; Wang, M.; Wang, H.; Wu, Z.; Nicewicz, D. A.; Li, Z. Direct arene C-H fluorination with ¹?F? via organic photoredox catalysis. Science 2019, 364, 1170-1174.
  103. Holmberg-Douglas, N.; Onuska, N. P. R.; Nicewicz, D. A. A three-component dicarbofunctionalization of styrenes via cation-radical cyclopropanation. Angew. Chem. Int. Ed. 2020, 59, 7425-7429.
  104. Patel, N. R.; Kelly, C. B.; Siegenfeld, A. P.; Molander, G. A. Mild, redox-neutral alkylation of imidazo[1,2-a]pyridines: mechanistic insights into a direct C-H functionalization reaction. ACS Catal. 2017, 7, 1766-1770.
  105. Beatty, J. W.; Stephenson, C. R. J. Amine functionalization via oxidative photoredox catalysis: methodology development and complex molecule synthesis. Acc. Chem. Res. 2015, 48, 1474-1484.
  106. Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 2013, 113, 5322-5363.
  107. Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. The medicinal chemist's toolbox for late-stage functionalization of drug-like molecules. Chem. Soc. Rev. 2016, 45, 546-576.
  108. Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A. W.; Wilson, D. M.; Wood, A. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 2018, 10, 383-394.
  109. Campos, K. R. Direct sp³ C-H bond activation adjacent to nitrogen in heterocycles. Chem. Soc. Rev. 2007, 36, 1069-1084.
  110. White, M. C. Adding aliphatic C-H bond oxidations to synthesis. Science 2012, 335, 807-809.
  111. Newhouse, T.; Baran, P. S. If C-H bonds could talk: selective C-H bond oxidation. Angew. Chem. Int. Ed. 2011, 50, 3362-3374.
  112. Davies, H. M. L.; Morton, D. Recent advances in C-H functionalization. J. Org. Chem. 2016, 81, 343-350.
  113. Kärkäs, M. D.; Porco Jr., J. A.; Stephenson, C. R. J. Photochemical approaches to complex chemotypes: applications in natural product synthesis. Chem. Rev. 2016, 116, 9683-9747.
  114. Beatty, J. W.; Stephenson, C. R. J. Synthesis of (-)-gliocladin C via a catalytic asymmetric Diels-Alder reaction enabled by organocatalysis and photoredox catalysis. J. Am. Chem. Soc. 2014, 136, 10270-10273.
  115. Schultz, D. M.; Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 2014, 343, 1239176.
  116. Bonfield, H. E.; Mercer, K.; Diaz, A.; Knighton, R. C.; Weller, A. S.; Fenwick, O.; Hallett, J. P. Shining light on the photochemical synthesis of conducting polymers. Nat. Commun. 2020, 11, 804.
  117. Dadashi-Silab, S.; Doran, S.; Yagci, Y. Photoinduced electron transfer reactions for macromolecular syntheses. Chem. Rev. 2016, 116, 10212-10275.
  118. Ravelli, D.; Protti, S.; Neri, P.; Fagnoni, M.; Albini, A. Photochemical technologies assessed: the case of rose oxide. Green Chem. 2011, 13, 1876-1884.
  119. Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 2018, 57, 10034-10072.
  120. Cambié, D.; Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; Noël, T. Applications of continuous-flow photochemistry in organic synthesis, materials science, and water treatment. Chem. Rev. 2016, 116, 10276-10341.
  121. Capaldo, L.; Ravelli, D. Hydrogen atom transfer (HAT): a versatile strategy for substrate activation in photocatalyzed organic synthesis. Eur. J. Org. Chem. 2017, 2056-2071.
  122. Coley, C. W.; Barzilay, R.; Jaakkola, T. S.; Green, W. H.; Jensen, K. F. Prediction of organic reaction outcomes using machine learning. ACS Cent. Sci. 2017, 3, 434-443.
  123. Gentry, E. C.; Knowles, R. R. Synthetic applications of proton-coupled electron transfer. Acc. Chem. Res. 2016, 49, 1546-1556.
  124. Twilton, J.; Christensen, M.; DiRocco, D. A.; Ruck, R. T.; Davies, I. W.; MacMillan, D. W. C. Selective hydrogen atom abstraction through induced bond polarization: direct α-arylation of alcohols through photoredox, HAT, and nickel catalysis. Angew. Chem. Int. Ed. 2018, 57, 5369-5373.
  125. Crisenza, G. E. M.; Mazzarella, D.; Melchiorre, P. Synthetic methods driven by the photoactivity of electron donor-acceptor complexes. J. Am. Chem. Soc. 2020, 142, 5461-5476.
  126. Noël, T.; Zysman-Colman, E. The promise and pitfalls of photocatalysis for organic synthesis. Chem Catal. 2022, 2, 468-476.
  127. Govaerts, S.; Nyuchev, A.; Noël, T. Pushing the boundaries of C-H bond functionalization chemistry using flow technology. J. Flow Chem. 2020, 10, 13-71.
  128. Wei, X.-J.; Abdiaj, I.; Sambiagio, C.; Li, C.; Zysman-Colman, E.; Alcázar, J.; Noël, T. Visible-light-promoted iron-catalyzed C(sp²)-C(sp³) Kumada cross-coupling in flow. Angew. Chem. Int. Ed. 2019, 58, 13030-13034.
  129. Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. The Hitchhiker's guide to flow chemistry. Chem. Rev. 2017, 117, 11796-11893.
  130. Rehm, T. H. Reactor technology concepts for flow photochemistry. ChemPhotoChem 2020, 4, 235-254.
  131. Rehm, T. H.; Hofmann, C.; Reinhard, D.; Klemm, E.; Schimanski, A. Luminescent microreactor chips for reaction monitoring and catalyst characterization. ChemPhotoChem 2019, 3, 881-890.

Reference

  1. Lyons, T. W.; Sanford, M. S. Palladium-catalyzed ligand-directed C-H functionalization reactions. Chem. Rev. 2010, 110, 1147-1169.
  2. Wencel-Delord, J.; Glorius, F. C-H bond activation enables the rapid construction and late-stage diversification of functional molecules. Nat. Chem. 2013, 5, 369-375.
  3. Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. The medicinal chemist's toolbox for late-stage functionalization of drug-like molecules. Chem. Soc. Rev. 2016, 45, 546-576.
  4. McMurray, L.; O'Hara, F.; Gaunt, M. J. Recent developments in natural product synthesis using metal-catalysed C-H bond functionalization. Chem. Soc. Rev. 2011, 40, 1885-1898.
  5. Hartwig, J. F. Evolution of a fourth generation catalyst for the amination and thioetherification of aryl halides. Acc. Chem. Res. 2008, 41, 1534-1544.
  6. Ruiz-Castillo, P.; Buchwald, S. L. Applications of palladium-catalyzed C-N cross-coupling reactions. Chem. Rev. 2016, 116, 12564-12649.
  7. Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 2013, 113, 5322-5363.
  8. Narayanam, J. M. R.; Stephenson, C. R. J. Visible light photoredox catalysis: applications in organic synthesis. Chem. Soc. Rev. 2011, 40, 102-113.
  9. Romero, N. A.; Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 2016, 116, 10075-10166.
  10. Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. Photoredox catalysis in organic chemistry. J. Org. Chem. 2016, 81, 6898-6926.
  11. Hu, J.; Pradhan, S.; Waiba, S.; Das, S. Photocatalytic regioselective C-H bond functionalizations in arenes. Chem. Sci. 2025, 16, 1041-1070.
  12. Douglas, N. H.; Nicewicz, D. A. Photoredox-catalyzed C-H functionalization reactions. Chem. Rev. 2022, 122, 1925-2016.
  13. Chan, A. Y.; Perry, I. B.; Bissonnette, N. B.; Buksh, B. F.; Edwards, G. A.; Frye, L. I.; Garry, O. L.; Lavagnino, M. N.; Li, B. X.; Liang, Y.; et al. Metallaphotoredox: The merger of photoredox and transition metal catalysis. Chem. Rev. 2022, 122, 1485-1542.
  14. Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C. The merger of transition metal and photocatalysis. Nat. Rev. Chem. 2017, 1, 0052.
  15. Fabry, D. C.; Rueping, M. Merging visible light photoredox catalysis with metal-catalyzed C-H activations: on the role of oxygen and superoxide ions as oxidants. Acc. Chem. Res. 2016, 49, 1969-1979.
  16. Guilleard, L.; Wencel-Delord, J. When metal-catalyzed C-H functionalization meets visible-light photocatalysis. Beilstein J. Org. Chem. 2020, 16, 1754-1804.
  17. Margrey, K. A.; Nicewicz, D. A. A general approach to catalytic alkene anti-Markovnikov hydrofunctionalization reactions via acridinium photoredox catalysis. Acc. Chem. Res. 2016, 49, 1997-2006.
  18. Kärkäs, M. D. Photocatalytic approaches for C-H functionalization and C-N bond formation. Chem. Soc. Rev. 2018, 47, 5786-5865.
  19. Fukuzumi, S.; Ohkubo, K. Organic synthetic transformations using organic photoredox catalysts. Org. Biomol. Chem. 2014, 12, 6059-6071.
  20. Ohkubo, K.; Mizushima, K.; Iwata, R.; Fukuzumi, S. Selective photocatalytic aerobic bromination with hydrogen bromide via an electron-transfer state of 9-mesityl-10-methylacridinium ion. Chem. Sci. 2011, 2, 715-722.
  21. Balzani, V.; Ceroni, P.; Juris, A. Photochemistry and Photophysics: Concepts, Research, Applications; Wiley-VCH: Weinheim, 2014.
  22. Cismesia, M. A.; Yoon, T. P. Characterizing chain processes in visible light photoredox catalysis. Chem. Sci. 2015, 6, 5426-5434.
  23. Hatchard, C. G.; Parker, C. A. A new sensitive chemical actinometer. II. Potassium ferrioxalate as a standard chemical actinometer. Proc. R. Soc. London, Ser. A 1956, 235, 518-536.
  24. Schmittel, M.; Burghart, A. Understanding reactivity patterns of radical cations. Angew. Chem. Int. Ed. 1997, 36, 2550-2589.
  25. Zweig, A.; Hodgson, W. G.; Jura, W. H. Electrochemical studies of some azaaromatics. Kinetic evidence for proton transfer reactions. J. Am. Chem. Soc. 1964, 86, 4124-4129.
  26. Yoshida, J.-I.; Kataoka, K.; Horcajada, R.; Nagaki, A. Modern strategies in electroorganic synthesis. Chem. Rev. 2008, 108, 2265-2299.
  27. Morofuji, T.; Shimizu, A.; Yoshida, J.-I. Electrochemical C-H amination: synthesis of aromatic primary amines via N-arylsulfonamides. J. Am. Chem. Soc. 2013, 135, 5000-5003.
  28. Morofuji, T.; Shimizu, A.; Yoshida, J.-I. Direct C-N coupling of imidazoles with aromatic and benzylic compounds via electrochemically generated arene cation radicals. J. Am. Chem. Soc. 2014, 136, 4496-4499.
  29. Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual catalysis strategies in photochemical synthesis. Chem. Rev. 2016, 116, 10035-10074.
  30. Hopkinson, M. N.; Sahoo, B.; Li, J.-L.; Glorius, F. Dual catalysis sees the light: combining photoredox with organo-, acid, and transition-metal catalysis. Chem.-Eur. J. 2014, 20, 3874-3886.
  31. Brennan, P.; George, M. W.; Jina, O. S.; Long, C.; McKenna, J.; Pryce, M. T.; Sun, X.-Z.; Vuong, K. Q. UV and visible light switchable CO release from Mn?(CO)?? using air-stable [Ru(bpy)?(dppz)]²?. Organometallics 2008, 27, 3671-3680.
  32. Levin, M. D.; Kim, S.; Toste, F. D. Photoredox catalysis unlocks single-electron elementary steps in transition metal catalyzed cross-coupling. ACS Cent. Sci. 2016, 2, 293-301.
  33. Saha, A.; Guin, S.; Ali, W.; Bhattacharya, T.; Sasmal, S.; Goswami, N.; Prakash, G.; Sinha, S. K.; Chandrashekar, H. B.; Panda, S.; et al. Photoinduced regioselective olefination of arenes at proximal and distal sites. J. Am. Chem. Soc. 2022, 144, 1929-1940.
  34. Korvorapun, K.; Struwe, J.; Kuniyil, R.; Zangarelli, A.; Casnati, A.; Waeterschoot, M.; Ackermann, L. Photo-induced ruthenium-catalyzed C-H arylations at ambient temperature. Angew. Chem. Int. Ed. 2020, 59, 18103-18109.
  35. Ali, W.; Saha, A.; Ge, H.; Maiti, D. Photoinduced meta-selective C-H oxygenation of arenes. JACS Au 2023, 3, 1790-1799.
  36. Cheung, K. P. S.; Sarkar, S.; Gevorgyan, V. Visible light-induced transition metal catalysis. Chem. Rev. 2022, 122, 1543-1625.
  37. Sambiagio, C.; Schönbauer, D.; Blieck, R.; Dao-Huy, T.; Pototschnig, G.; Schaaf, P.; Wiesinger, T.; Zia, M. F.; Wencel-Delord, J.; Besset, T.; et al. A comprehensive overview of directing groups applied in metal-catalysed C-H functionalisation chemistry. Chem. Soc. Rev. 2018, 47, 6603-6743.
  38. Dutta, U.; Maiti, S.; Bhattacharya, T.; Maiti, D. Arene diversification through distal C(sp²)-H functionalization. Science 2021, 372, eabd5992.
  39. Maji, A.; Bhaskararao, B.; Singha, S.; Sunoj, R. B.; Maiti, D. Directing group assisted meta-hydroxylation by C-H activation. Chem. Sci. 2016, 7, 3147-3153.
  40. Li, J.; Warratz, S.; Zell, D.; De Sarkar, S.; Ishikawa, E. E.; Ackermann, L. Versatile ruthenium(II)-catalyzed C-H cyanations of (hetero)arenes. J. Am. Chem. Soc. 2015, 137, 13894-13901.
  41. Zhou, C.; Li, P.; Zhu, X.; Wang, L. Merging photoredox with palladium catalysis: decarboxylative ortho-acylation of acetanilides with α-oxocarboxylic acids under mild reaction conditions. Org. Lett. 2015, 17, 6198-6201.
  42. Wang, H.; Li, T.; Hu, D.; Tong, X.; Zheng, L.; Xia, C. Acylation of arenes with aldehydes through dual C-H activations by merging photocatalysis and palladium catalysis. Org. Lett. 2021, 23, 3772-3776.
  43. Gillespie, J. E.; Morrill, C.; Phipps, R. J. Regioselective radical arene amination for the concise synthesis of ortho-phenylenediamines. J. Am. Chem. Soc. 2021, 143, 9355-9360.
  44. Mihai, M. T.; Williams, B. D.; Phipps, R. J. Para-selective C-H borylation of common arene building blocks enabled by ion-pairing with a bulky countercation. J. Am. Chem. Soc. 2019, 141, 15477-15482.
  45. Leitch, J. A.; Bhonoah, Y.; Frost, C. G. Beyond C2 and C3: transition-metal-catalyzed C-H functionalization of indole. ACS Catal. 2017, 7, 5618-5627.
  46. Dutta, U.; Modak, A.; Bhaskararao, B.; Bera, M.; Bag, S.; Mondal, A.; Lupton, D. W.; Sunoj, R. B.; Maiti, D. Catalytic arene meta-C-H functionalization exploiting a quinoline-based template. ACS Catal. 2017, 7, 3162-3168.
  47. Yang, J. Palladium-catalyzed meta-selective C-H bond functionalization. Org. Biomol. Chem. 2015, 13, 1930-1941.
  48. Ali, W.; Saha, A.; Ge, H.; Maiti, D. Photoinduced meta-selective C-H oxygenation of arenes. JACS Au 2023, 3, 1790-1799.
  49. Wang, P.; Farmer, M. E.; Huo, X.; Jain, P.; Shen, P.-X.; Ishoey, M.; Bradner, J. E.; Wisniewski, S. R.; Eastgate, M. D.; Yu, J.-Q. Ligand-promoted meta-C-H arylation of anilines, phenols, and heterocycles. J. Am. Chem. Soc. 2016, 138, 9269-9276.
  50. Bera, M.; Sahoo, S. K.; Maiti, D. Room-temperature meta-functionalization: Pd(II)-catalyzed synthesis of 1,3,5-trialkenyl arene and meta-hydroxylated olefin. ACS Catal. 2016, 6, 3575-3579.
  51. Jayarajan, R.; Das, J.; Bag, S.; Chowdhury, R.; Maiti, D. Diverse meta-C-H functionalization of arenes across different linker lengths. Angew. Chem. Int. Ed. 2018, 57, 7659-7663.
  52. Boursalian, G. B.; Ham, W. S.; Mazzotti, A. R.; Ritter, T. Charge-transfer-directed radical substitution enables para-selective C-H functionalization. Nat. Chem. 2016, 8, 810-815.
  53. Hoque, M. E.; Bisht, R.; Haldar, C.; Chattopadhyay, B. Noncovalent interactions in Ir-catalyzed C-H activation: L-shaped ligand for para-selective borylation of aromatic esters. J. Am. Chem. Soc. 2017, 139, 7745-7748.
  54. Ruffoni, A.; Juliá, F.; Svejstrup, T. D.; McMillan, A. J.; Douglas, J. J.; Leonori, D. Practical and regioselective amination of arenes using alkyl amines. Nat. Chem. 2019, 11, 426-433.
  55. Romero, N. A.; Margrey, K. A.; Tay, N. E.; Nicewicz, D. A. Site-selective arene C-H amination via photoredox catalysis. Science 2015, 349, 1326-1330.
  56. Margrey, K. A.; Levens, A.; Nicewicz, D. A. Direct aryl C-H amination with primary amines using organic photoredox catalysis. Angew. Chem. Int. Ed. 2017, 56, 15644-15648.
  57. Margrey, K. A.; McManus, J. B.; Bonazzi, S.; Zecri, F.; Nicewicz, D. A. Predictive model for site-selective aryl and heteroaryl C-H functionalization via organic photoredox catalysis. J. Am. Chem. Soc. 2017, 139, 11288-11299.
  58. Park, Y.; Kim, Y.; Chang, S. Transition metal-catalyzed C-H amination: scope, mechanism, and applications. Chem. Rev. 2017, 117, 9247-9301.
  59. Jiao, J.; Murakami, K.; Itami, K. Catalytic methods for aromatic C-H amination: an ideal strategy for nitrogen-based functional molecules. ACS Catal. 2016, 6, 610-633.
  60. Murakami, K.; Perry, G. J. P.; Itami, K. Aromatic C-H amination: a radical approach for adding new functions into biology- and materials-oriented aromatics. Org. Biomol. Chem. 2017, 15, 6071-6075.
  61. Boursalian, G. B.; Ngai, M.-Y.; Hojczyk, K. N.; Ritter, T. Pd-catalyzed aryl C-H imidation with arene as the limiting reagent. J. Am. Chem. Soc. 2013, 135, 13278-13281.
  62. Allen, L. J.; Cabrera, P. J.; Lee, M.; Sanford, M. S. N-Acyloxyphthalimides as nitrogen radical precursors in the visible light photocatalyzed room temperature C-H amination of arenes and heteroarenes. J. Am. Chem. Soc. 2014, 136, 5607-5610.
  63. Vo, G. D.; Hartwig, J. F. Palladium-catalyzed coupling of ammonia with aryl chlorides, bromides, iodides, and sulfonates: a general method for the preparation of primary arylamines. J. Am. Chem. Soc. 2009, 131, 11049-11061.
  64. Pistritto, V. A.; Liu, S.; Nicewicz, D. A. Mechanistic investigations into amination of unactivated arenes via cation radical accelerated nucleophilic aromatic substitution. J. Am. Chem. Soc. 2022, 144, 15118-15131.
  65. Tay, N. E. S.; Nicewicz, D. A. Cation radical accelerated nucleophilic aromatic substitution via organic photoredox catalysis. J. Am. Chem. Soc. 2017, 139, 16100-16104.
  66. Margrey, K. A.; McManus, J. B.; Bonazzi, S.; Zecri, F.; Nicewicz, D. A. Predictive model for site-selective aryl and heteroaryl C-H functionalization via organic photoredox catalysis. J. Am. Chem. Soc. 2017, 139, 11288-11299.
  67. Roth, H. G.; Romero, N. A.; Nicewicz, D. A. Experimental and calculated electrochemical potentials of common organic molecules for applications to single-electron redox chemistry. Synlett 2016, 27, 714-723.
  68. McManus, J. B.; Nicewicz, D. A. Direct C-H cyanation of arenes via organic photoredox catalysis. J. Am. Chem. Soc. 2017, 139, 2880-2883.
  69. Holmberg-Douglas, N.; Nicewicz, D. A. Arene cyanation via cation-radical accelerated-nucleophilic aromatic substitution. Org. Lett. 2019, 21, 7114-7118.
  70. McManus, J. B.; Nicewicz, D. A. Direct C-H cyanation of arenes via organic photoredox catalysis. J. Am. Chem. Soc. 2017, 139, 2880-2883.
  71. Sundermeier, M.; Zapf, A.; Beller, M. A convenient synthesis of arylnitriles using potassium hexacyanoferrate(II) and palladium catalysts. Angew. Chem. Int. Ed. 2003, 42, 1661-1664.
  72. Anbarasan, P.; Schareina, T.; Beller, M. Recent developments and perspectives in palladium-catalyzed cyanation of aryl halides: synthesis of benzonitriles. Chem. Soc. Rev. 2011, 40, 5049-5067.
  73. Li, G.; Leow, D.; Wan, L.; Yu, J.-Q. Olefin synthesis via Pd(II)-catalyzed oxidative C-H alkenylation of arenes. Angew. Chem. Int. Ed. 2013, 52, 1245-1247.
  74. Rueping, M.; Koenigs, R. M.; Poscharny, K.; Fabry, D. C.; Leonori, D.; Vila, C. Dual catalysis: combination of photocatalysis with Lewis acid catalysis for direct C-H functionalization. Chem. Eur. J. 2012, 18, 5170-5174.
  75. Fabry, D. C.; Zoller, J.; Raja, S.; Rueping, M. Combining rhodium and photoredox catalysis for C-H functionalizations of arenes: oxidative Heck reactions with visible light. Angew. Chem. Int. Ed. 2014, 53, 10228-10231.
  76. Ali, W.; Saha, A.; Ge, H.; Maiti, D. Photoinduced meta-selective C-H oxygenation of arenes. JACS Au 2023, 3, 1790-1799.
  77. Wang, C.-S.; Dixneuf, P. H.; Soulé, J.-F. Photoredox catalysis for building C-C bonds from C(sp²)-H bonds. Chem. Rev. 2018, 118, 7532-7585.
  78. Shee, M.; Singh, N. D. P. Cooperative photoredox and palladium catalysis: recent advances in various functionalization reactions. Catal. Sci. Technol. 2021, 11, 742-767.
  79. Juris, A.; Balzani, V.; Barigelletti, F.; Campagna, S.; Belser, P.; von Zelewsky, A. Ru(II) polypyridine complexes: photophysics, photochemistry, electrochemistry, and chemiluminescence. Coord. Chem. Rev. 1988, 84, 85-277.
  80. Flamigni, L.; Barbieri, A.; Sabatini, C.; Ventura, B.; Barigelletti, F. Photochemistry and photophysics of coordination compounds: iridium. Top. Curr. Chem. 2007, 281, 143-203.
  81. Campagna, S.; Puntoriero, F.; Nastasi, F.; Bergamini, G.; Balzani, V. Photochemistry and photophysics of coordination compounds: ruthenium. Top. Curr. Chem. 2007, 280, 117-214.
  82. König, B. Photocatalysis in organic synthesis - past, present, and future. Eur. J. Org. Chem. 2017, 1979-1981.
  83. Parasram, M.; Gevorgyan, V. Visible light-induced transition metal-catalyzed transformations: beyond conventional photosensitizers. Chem. Soc. Rev. 2017, 46, 6227-6240.
  84. Chuentragool, P.; Kurandina, D.; Gevorgyan, V. Catalysis with palladium complexes photoexcited by visible light. Angew. Chem. Int. Ed. 2019, 58, 11586-11598.
  85. Zhou, W.-J.; Cao, G.-M.; Shen, G.; Zhu, X.-Y.; Gui, Y.-Y.; Ye, J.-H.; Suna, L.; Liao, L.-L.; Li, J.; Yu, D.-G. Visible-light-driven palladium-catalyzed radical alkylation of C-H bonds with unactivated alkyl bromides. Angew. Chem. Int. Ed. 2017, 56, 15683-15687.
  86. Ghosh, I.; Marzo, L.; Das, A.; Shaikh, R.; König, B. Visible light mediated photoredox catalytic arylation reactions. Acc. Chem. Res. 2016, 49, 1566-1577.
  87. Hari, D. P.; König, B. Synthetic applications of eosin Y in photoredox catalysis. Chem. Commun. 2014, 50, 6688-6699.
  88. Benniston, A. C.; Harriman, A. Artificial photosynthesis. Mater. Today 2008, 11, 26-34.
  89. Fukuzumi, S.; Ohkubo, K.; Suenobu, T. Long-lived charge separation and applications in artificial photosynthesis. Acc. Chem. Res. 2014, 47, 1455-1464.
  90. Pistritto, V. A.; Schutzbach-Horton, M. E.; Nicewicz, D. A. Nucleophilic aromatic substitution of unactivated fluoroarenes enabled by organic photoredox catalysis. J. Am. Chem. Soc. 2020, 142, 17187-17194.
  91. Mastandrea, M. M.; Pericàs, M. A. Photoredox dual catalysis: a fertile playground for the discovery of new reactivities. Eur. J. Inorg. Chem. 2021, 3421-3431.
  92. Lang, S. B.; O'Nele, K. M.; Tunge, J. A. Decarboxylative allylation of amino alkanoic acids and esters via dual catalysis. J. Am. Chem. Soc. 2014, 136, 13606-13609.
  93. Zoller, J.; Fabry, D. C.; Ronge, M. A.; Rueping, M. Synthesis of indoles using visible light: photoredox catalysis for palladium-catalyzed C-H activation. Angew. Chem. Int. Ed. 2014, 53, 13264-13268.
  94. Le, C.; Chen, T. Q.; Liang, T.; Zhang, P.; MacMillan, D. W. C. A radical approach to the copper oxidative addition problem: trifluoromethylation of bromoarenes. Science 2018, 360, 1010-1014.
  95. Huang, H.-M.; Bellotti, P.; Erchinger, J. E.; Paulisch, T. O.; Glorius, F. Radical carbonyl umpolung arylation via dual nickel catalysis. J. Am. Chem. Soc. 2022, 144, 1899-1909.
  96. Ohkubo, K.; Fujimoto, A.; Fukuzumi, S. Photocatalytic monofluorination of benzene by fluoride via photoinduced electron transfer with 3-cyano-1-methylquinolinium. J. Phys. Chem. A 2013, 117, 10719-10725.
  97. Riener, M.; Nicewicz, D. A. Synthesis of cyclobutane lignans via an organic photoredox catalyzed [2+2] cycloaddition. Chem. Sci. 2013, 4, 2625-2629.
  98. Nicewicz, D. A.; Nguyen, T. M. Recent applications of organic dyes as photoredox catalysts in organic synthesis. ACS Catal. 2014, 4, 355-360.
  99. Venditto, N. J.; Nicewicz, D. A. Cation radical-accelerated nucleophilic aromatic substitution for amination of alkoxyarenes. Org. Lett. 2020, 22, 4817-4822.
  100. Tay, N. E. S.; Chen, W.; Levens, A.; Pistritto, V. A.; Huang, Z.; Wu, Z.; Li, Z.; Nicewicz, D. A. ¹?F- and ¹?F-arene deoxyfluorination via organic photoredox-catalysed polarity-reversed nucleophilic aromatic substitution. Nat. Catal. 2020, 3, 734-742.
  101. Margrey, K. A.; Nicewicz, D. A. A general approach to catalytic alkene anti-Markovnikov hydrofunctionalization reactions via acridinium photoredox catalysis. Acc. Chem. Res. 2016, 49, 1997-2006.
  102. Chen, W.; Huang, Z.; Tay, N. E. S.; Giglio, B.; Wang, M.; Wang, H.; Wu, Z.; Nicewicz, D. A.; Li, Z. Direct arene C-H fluorination with ¹?F? via organic photoredox catalysis. Science 2019, 364, 1170-1174.
  103. Holmberg-Douglas, N.; Onuska, N. P. R.; Nicewicz, D. A. A three-component dicarbofunctionalization of styrenes via cation-radical cyclopropanation. Angew. Chem. Int. Ed. 2020, 59, 7425-7429.
  104. Patel, N. R.; Kelly, C. B.; Siegenfeld, A. P.; Molander, G. A. Mild, redox-neutral alkylation of imidazo[1,2-a]pyridines: mechanistic insights into a direct C-H functionalization reaction. ACS Catal. 2017, 7, 1766-1770.
  105. Beatty, J. W.; Stephenson, C. R. J. Amine functionalization via oxidative photoredox catalysis: methodology development and complex molecule synthesis. Acc. Chem. Res. 2015, 48, 1474-1484.
  106. Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Visible light photoredox catalysis with transition metal complexes: applications in organic synthesis. Chem. Rev. 2013, 113, 5322-5363.
  107. Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. The medicinal chemist's toolbox for late-stage functionalization of drug-like molecules. Chem. Soc. Rev. 2016, 45, 546-576.
  108. Blakemore, D. C.; Castro, L.; Churcher, I.; Rees, D. C.; Thomas, A. W.; Wilson, D. M.; Wood, A. Organic synthesis provides opportunities to transform drug discovery. Nat. Chem. 2018, 10, 383-394.
  109. Campos, K. R. Direct sp³ C-H bond activation adjacent to nitrogen in heterocycles. Chem. Soc. Rev. 2007, 36, 1069-1084.
  110. White, M. C. Adding aliphatic C-H bond oxidations to synthesis. Science 2012, 335, 807-809.
  111. Newhouse, T.; Baran, P. S. If C-H bonds could talk: selective C-H bond oxidation. Angew. Chem. Int. Ed. 2011, 50, 3362-3374.
  112. Davies, H. M. L.; Morton, D. Recent advances in C-H functionalization. J. Org. Chem. 2016, 81, 343-350.
  113. Kärkäs, M. D.; Porco Jr., J. A.; Stephenson, C. R. J. Photochemical approaches to complex chemotypes: applications in natural product synthesis. Chem. Rev. 2016, 116, 9683-9747.
  114. Beatty, J. W.; Stephenson, C. R. J. Synthesis of (-)-gliocladin C via a catalytic asymmetric Diels-Alder reaction enabled by organocatalysis and photoredox catalysis. J. Am. Chem. Soc. 2014, 136, 10270-10273.
  115. Schultz, D. M.; Yoon, T. P. Solar synthesis: prospects in visible light photocatalysis. Science 2014, 343, 1239176.
  116. Bonfield, H. E.; Mercer, K.; Diaz, A.; Knighton, R. C.; Weller, A. S.; Fenwick, O.; Hallett, J. P. Shining light on the photochemical synthesis of conducting polymers. Nat. Commun. 2020, 11, 804.
  117. Dadashi-Silab, S.; Doran, S.; Yagci, Y. Photoinduced electron transfer reactions for macromolecular syntheses. Chem. Rev. 2016, 116, 10212-10275.
  118. Ravelli, D.; Protti, S.; Neri, P.; Fagnoni, M.; Albini, A. Photochemical technologies assessed: the case of rose oxide. Green Chem. 2011, 13, 1876-1884.
  119. Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Visible-light photocatalysis: does it make a difference in organic synthesis? Angew. Chem. Int. Ed. 2018, 57, 10034-10072.
  120. Cambié, D.; Bottecchia, C.; Straathof, N. J. W.; Hessel, V.; Noël, T. Applications of continuous-flow photochemistry in organic synthesis, materials science, and water treatment. Chem. Rev. 2016, 116, 10276-10341.
  121. Capaldo, L.; Ravelli, D. Hydrogen atom transfer (HAT): a versatile strategy for substrate activation in photocatalyzed organic synthesis. Eur. J. Org. Chem. 2017, 2056-2071.
  122. Coley, C. W.; Barzilay, R.; Jaakkola, T. S.; Green, W. H.; Jensen, K. F. Prediction of organic reaction outcomes using machine learning. ACS Cent. Sci. 2017, 3, 434-443.
  123. Gentry, E. C.; Knowles, R. R. Synthetic applications of proton-coupled electron transfer. Acc. Chem. Res. 2016, 49, 1546-1556.
  124. Twilton, J.; Christensen, M.; DiRocco, D. A.; Ruck, R. T.; Davies, I. W.; MacMillan, D. W. C. Selective hydrogen atom abstraction through induced bond polarization: direct α-arylation of alcohols through photoredox, HAT, and nickel catalysis. Angew. Chem. Int. Ed. 2018, 57, 5369-5373.
  125. Crisenza, G. E. M.; Mazzarella, D.; Melchiorre, P. Synthetic methods driven by the photoactivity of electron donor-acceptor complexes. J. Am. Chem. Soc. 2020, 142, 5461-5476.
  126. Noël, T.; Zysman-Colman, E. The promise and pitfalls of photocatalysis for organic synthesis. Chem Catal. 2022, 2, 468-476.
  127. Govaerts, S.; Nyuchev, A.; Noël, T. Pushing the boundaries of C-H bond functionalization chemistry using flow technology. J. Flow Chem. 2020, 10, 13-71.
  128. Wei, X.-J.; Abdiaj, I.; Sambiagio, C.; Li, C.; Zysman-Colman, E.; Alcázar, J.; Noël, T. Visible-light-promoted iron-catalyzed C(sp²)-C(sp³) Kumada cross-coupling in flow. Angew. Chem. Int. Ed. 2019, 58, 13030-13034.
  129. Plutschack, M. B.; Pieber, B.; Gilmore, K.; Seeberger, P. H. The Hitchhiker's guide to flow chemistry. Chem. Rev. 2017, 117, 11796-11893.
  130. Rehm, T. H. Reactor technology concepts for flow photochemistry. ChemPhotoChem 2020, 4, 235-254.
  131. Rehm, T. H.; Hofmann, C.; Reinhard, D.; Klemm, E.; Schimanski, A. Luminescent microreactor chips for reaction monitoring and catalyst characterization. ChemPhotoChem 2019, 3, 881-890.

Photo
Ajaysinh Vaghela
Corresponding author

St. Xavier’s College, Ahmedabad, Gujrat, India.

Photo
Haval Chauhan
Co-author

St. Xavier’s College, Ahmedabad, Gujrat, India.

Ajaysinh Vaghela, Haval Chauhan, Photocatalytic Regioselective C-H Functionalization of Arenes: Advances, Mechanisms, and Applications, Int. J. of Pharm. Sci., 2025, Vol 3, Issue 9, 652-668. https://doi.org/10.5281/zenodo.17063329

More related articles
Lenacapavir: A Novel Capsid Inhibitor in HIV-1 Tre...
Ravula Tulasi Naga pavan kumar, Panja Aishwarya Sai, P. Suma Sri ...
Method Development And Validation Of Imeglimin Hyd...
K Suresh Kumar, M Sajin Arokia Raj, R Arivukkarasu, N. Kiruthiga,...
Formulation and Evaluation of a Polyherbal Antican...
Kaushal Borkar , Dr. M. D. kitukale, Gayatri Argulwar, Sanket Des...
Molecular Docking Study of Benzimidazoles against ?-Catenin: In Silico Approach ...
Mahesh Kumar N, Dr. Shachindra L Nargund, Priya A , Sharmila Gote, ...
Understanding Laser Induced Breakdown Spectroscopy: An Overview...
Rose Mary Joseph, Annamma Baby, Aadiya Shanuj, Hizana Sidheek, Deepu J. S., ...
Interplay Between Antidiabetic Drugs And Kidney Health: Understanding The Risks...
Prathmesh Sudhir Gogate , Shailesh G. Jawarkar, Nishan. N. Bobade, Madhuri D. Game, Monika P. Jadhao...
Related Articles
A Comprehensive Review on Chandipura Virus...
Dr. R. Jona Methusula, K. Supraja, E. Charitha, ...
Molecular Dynamics: Concept, Tools, Workflow and Applications...
Vaishnavi Chavan, Amruta Kale, Prerana Panchwagh, Monika Shinde, Sagar Kale, Utkarsha Chavan, ...
Biopharmaceuticals And Gene Therapy...
Sneha Kumari, Dr. Rakhi Kapadiya, Dr. Jitendra Banweer, ...
UV Spectroscopic Estimation of Brivaracetam in Bulk Drug and Formulations ...
Dr Kumar Raja Jayavarapu, M. Manikanta, M. Dharani, M. Mani Likitha, ...
Lenacapavir: A Novel Capsid Inhibitor in HIV-1 Treatment and Capsid Inhibitors D...
Ravula Tulasi Naga pavan kumar, Panja Aishwarya Sai, P. Suma Sri , Boddani Sunil, ...
More related articles
Lenacapavir: A Novel Capsid Inhibitor in HIV-1 Treatment and Capsid Inhibitors D...
Ravula Tulasi Naga pavan kumar, Panja Aishwarya Sai, P. Suma Sri , Boddani Sunil, ...
Method Development And Validation Of Imeglimin Hydrochloride Using High-Performa...
K Suresh Kumar, M Sajin Arokia Raj, R Arivukkarasu, N. Kiruthiga, S. Dhinesh Kumar, ...
Formulation and Evaluation of a Polyherbal Anticancer Tablet Containing Moringa ...
Kaushal Borkar , Dr. M. D. kitukale, Gayatri Argulwar, Sanket Deshmukh , Shilpa Jaiswal , ...
Lenacapavir: A Novel Capsid Inhibitor in HIV-1 Treatment and Capsid Inhibitors D...
Ravula Tulasi Naga pavan kumar, Panja Aishwarya Sai, P. Suma Sri , Boddani Sunil, ...
Method Development And Validation Of Imeglimin Hydrochloride Using High-Performa...
K Suresh Kumar, M Sajin Arokia Raj, R Arivukkarasu, N. Kiruthiga, S. Dhinesh Kumar, ...
Formulation and Evaluation of a Polyherbal Anticancer Tablet Containing Moringa ...
Kaushal Borkar , Dr. M. D. kitukale, Gayatri Argulwar, Sanket Deshmukh , Shilpa Jaiswal , ...