View Article

  • Applications Of Gold Nanoparticles In Treating Diabetes And Complications Emerging From It: A Review
  • 1Department of Chemistry, Sanjay Ghodawat Institute, Atigre, Maharashtra, India 416118
    2School of Nanoscience and Biotechnology, Shivaji University, Kolhapur (MS) India 416004
     

Abstract

For patients with diabetes, diabetes-related complications are a primary cause of morbidity and death. This has become a major contributor for many deaths now days. The purpose of this review is to determine whether gold nanoparticles have the ability to treat diabetes and its side effects. Here, we provide a summary of the research on gold nanoparticles' potential for self-treatment. This review's primary objective is to highlight and provide an overview of some of the previous research in relation to many factors including the size of the gold nanoparticles, the dose quantity and its mode of administration, the experimental analysis & its findings. The second objective is to explain how gold nanoparticles work as a self-therapeutic against the complications of diabetes. It has been shown by several studies that gold nanoparticles have anti-inflammatory, anti-glycation, anti-angiogenic, antioxidant, and anti-hyperglycaemic properties. This review sheds light on gold nanoparticles' possible uses, which could lower the prevalence of diabetes & associated complications.

Keywords

Gold nanoparticles; Diabetes; Diabetic complications; Therapeutic effects; Antioxidant

Reference

  1. Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J. The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J. 2012; 12(1):5-18.
  2. Kashihara N, Haruna Y, K Kondeti V, S Kanwar Y. Oxidative stress in diabetic nephropathy. Curr. Med. Chem. 2010; 17(34):4256-4269.
  3. Pourghasem M, Shafi H, Babazadeh Z. Histological changes of kidney in diabetic nephropathy. Caspian J Intern Med. 2015;6(3):120-127.
  4. Barathmanikanth S, Kalishwaralal K, Sriram M, Pandian SR, Youn HS, Eom S et al. Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice J Nanotechnobiol. 2010;8(1):16.
  5. Afifi M, Abdelazim A.M. Ameliorative effect of zinc oxide and silver nanoparticles on antioxidant system in the brain of diabetic rats. Asian Pac J Trop Biomed. 2015;5(10):874-877.
  6. Opris R, Tatomir C, Olteanu D, Moldovan R, Moldovan B, David L et al. The effect of sambucus nigra l. Extract and phytosinthesized gold nanoparticles on diabetic rats. Colloid Surface B. 2017; 150:192-200.
  7. Ali M, Anuradha V, Abishek R., Yogananth N, Sheeba, H. In vitro anticancer activity of green synthesis ruthenium nanoparticle from dictyota dichotoma marine algae. NanoWorld J. 2017;3(4):66-71.
  8. Saha S, Xiong X, Chakraborty PK, Shameer K, Arvizo RR, Kudgus RA, et al. Gold nanoparticle reprograms pancreatic tumor microenvironment and inhibits tumor growth. ACS Nano. 2016;10(12):10636-10651.
  9. Arvizo RR, Rana S, Miranda OR, Bhattacharya R, Rotello V.M. and Mukherjee, P., Mechanism of anti-angiogenic property of gold nanoparticles: Role of nanoparticle size and surface charge. Nanomed-Nanotechnol. 2011;7(5):580-587.
  10. Shaheen TI, El-Naggar ME, Hussein JS, El-Bana M, Emara E, El-Khayat Z. et al. Antidiabetic assessment; in vivo study of gold and core-shell silver-gold nanoparticles on streptozotocin-induced diabetic rats. Biomed Pharmacother. 2016;83:865-875.
  11. Hamza A, Bashuaib H. Anti-diabetic and anti-fibrotic effects of gold and silver nano-particles on diabetic nephropathy induced experimentally. Bioscience Research. 2018;15(1):215228.
  12. Selim ME, Abd-Elhakim YM, Al-Ayadhi LY. Pancreatic response to gold nanoparticles includes decrease of oxidative stress and inflammation in autistic diabetic model. Cell. Physiol. Biochem. 2015;35(2):586-600.
  13. Bodelón G, Costas C, Pérez-Juste J, Pastoriza-Santos I, LizMarzán LM. Gold nanoparticles for regulation of cell function and behavior. Nano Today. 2017;13,40-60.
  14. Ashraf JM, Ansari MA, Khan HM, Alzohairy MA, Choi I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on ages formation using biophysical techniques. Sci Rep. 2016;6:20414.
  15. Mateo D, Morales P, Ávalos A, Haza AI. Comparative cytotoxicity evaluation of different size gold nanoparticles in human dermal fibroblasts. J Exp Nanosci. 2015;10(18): 1401-1417.
  16. Lopez-Chaves C, Soto-Alvaredo J, Montes-Bayon M, Bettmer J, Llopis J, Sanchez-Gonzalez C. Gold nanoparticles: Distribution, bioaccumulation and toxicity. In vitro and in vivo studies. Nanomed-Nanotechnol. 2018;14(1):1-12.
  17. Khan, J.A., Pillai, B., Das, T.K., Singh, Y. and Maiti, S., Molecular effects of uptake of gold nanoparticles in hela cells. Chembiochem. 2007;8(11):1237-1240.
  18. Spivak MY, Bubnov RV, Yemets IM, Lazarenko LM, Tymoshok NO, Ulberg ZR. Development and testing of gold nanoparticles for drug delivery and treatment of heart failure: A theranostic potential for ppp cardiology. EPMA J. 2013;4(1):20.
  19. Shah M, Badwaik VD, Dakshinamurthy R. Biological applications of gold nanoparticles. J Nanosci Nanotechno. 2014;14(1):344-362.
  20. Aziz F, Ihsan A, Nazir A, Ahmad I, Bajwa SZ, Rehman A et al.. Novel route synthesis of porous and solid gold nanoparticles for investigating their comparative performance as contrast agent in computed tomography scan and effect on liver and kidney function. Int J Nanomed. 2017;12:1555-1563.
  21. Si S, Pal A, Mohanta J, Satapathy SS. Gold nanostructure materials in diabetes management, J Phys D Appl Phys. 2017;50(13):134003.
  22. Arvizo RR, Saha S, Wang E, Robertson JD, Bhattacharya R, Mukherjee P. Inhibition of tumor growth and metastasis by a self-therapeutic nanoparticle. PNAS. 2013;110 (17):6700-6705.
  23. Alkilany, AM, Murphy CJ. Toxicity and cellular uptake of gold nanoparticles: What we have learned so far? J Nanopart Res. 2010;12 (7):2313-2333.
  24. Xia QY, Li, HX, Xiao K. Factors affecting the pharmacokinetics, biodistribution and toxicity of gold nanoparticles in drug delivery. Curr Drug Metab. 2016;17(9):849-861.
  25. Campos EJ, Campos A, Martins, J, Ambrósio AF. Opening eyes to nanomedicine: Where we are, challenges and expectations on nanotherapy for diabetic retinopathy. Nanomed-Nanotechnol. 2017;13(6):2101-2113.
  26. Williams, RM, Shah J, Tian HS, Chen X. Geissmann F, Jaimes EA, et al. Selective nanoparticle targeting of the renal tubules. Hypertension. 2018;71(1):87-94.
  27. Khan HA, Abdelhalim MAK, Al-Ayed MS, Alhomida AS. Effect of gold nanoparticles on glutathione and malondialdehyde levels in liver, lung and heart of rats. Saudi J. Biol. Sci. 2012;19(4):461-464.
  28. Bednarski M, Dudek M, Knutelska J, Nowi?ski L, Sapa J, Zygmun M. et al. The influence of the route of administration of gold nanoparticles on their tissue distribution and basic biochemical parameters: In vivo studies. Pharmacol Rep. 2015;67(3):405-409.
  29. Daisy P, Saipriya K. Biochemical analysis of cassia fistula aqueous extract and phytochemically synthesized gold nanoparticles as hypoglycemic treatment for diabetes mellitus. Int J Nanomed. 2012;7:1189-1202.
  30. Karthick V, Kumar VG, Dhas TS, Singaravelu G, Sadiq AM, Govindaraju K, Effect of biologically synthesized gold nanoparticles on alloxan-induced diabetic rats—an in vivo approach. Colloid Surface B. 2014;122:505-511.
  31. Venkatachalam M, Govindaraju K, Sadiq AM, Tamilselvan S, Kumar VG, Singaravelu G. Functionalization of gold nanoparticles as antidiabetic nanomaterial. Spectrochim Acta. A Mol Biomol Spectrosc. 2013;116:331-338.
  32. Edrees HM, Elbehiry A, Elmosaad YM. Hypoglycemic and anti-inflammatory effect of gold nanoparticles in streptozotocin-induced type 1 diabetes in experimental rats. Int. J. Diabetes Res. 2017; 6(1):16-23.
  33. Chen S-A, Chen H-M, Yao Y-D, Hung C-F, Tu C-S, Liang Y-J. Topical treatment with anti-oxidants and au nanoparticles promote healing of diabetic wound through receptor for advance glycation end-products. Eur J Pharm Sci. 2012;47(5):875-883.
  34. Kim JH, Kim MH, Jo DH, Yu YS, Lee TG, Kim JH. The inhibition of retinal neovascularization by gold nanoparticles via suppression of vegfr-2 activation. Biomaterials. 2011;32(7):1865-1871.
  35. Shen N, Zhang R, Zhang H-R, Luo H-Y, Shen W, Gao X, et al. Inhibition of retinal angiogenesis by gold nanoparticles via inducing autophagy. Int J Ophthalmol-Chi. 2018; 11(8):12691276.
  36. Muller AP, Ferreira GK, Pires AJ, de Bem Silveira G, de Souza DL, de Abreu Brandolfi J, et al. Gold nanoparticles prevent cognitive deficits, oxidative stress and inflammation in a rat model of sporadic dementia of alzheimer’s type. Mater Sci Eng C Mater Biol Appl. 2017; 77: 476-483.
  37. Paula M, Petronilho F, Vuolo F, Ferreira GK, De Costa L, Santos GP et al. Gold nanoparticles and/or N-acetylcysteine mediate carrageenan-induced inflammation and oxidative stress in a concentration-dependent manner. J Biomed Mater Res A. 2015;103(10):3323-3330.
  38. Sumbayev VV, Yasinska IM, Garcia CP, Gilliland D, Lall GS, Gibbs BF, et al. Gold nanoparticles downregulate interleukin-1?-induced pro-inflammatory responses. Small. 2013;9(3):472-477.
  39. Xu M-X, Wang M, Yang W-W. Gold-quercetin nanoparticles prevent metabolic endotoxemia-induced kidney injury by regulating tlr4/nf-?b signaling and nrf2 pathway in high fat diet fed mice. Int J Nanomed. 2017;12:327-345.
  40. Sheetz MJ, King GL. Molecular understanding of hyperglycemia’s adverse effects for diabetic complications. JAMA. 2002;288(20):2579-2588.
  41. Aronson D. Hyperglycemia and the pathobiology of diabetic complications. Adv cardiol. Karger Publishers. 2008;45:1-16.
  42. King GL. The role of inflammatory cytokines in diabetes and its complications. J Periodontol. 2008;79(8S):1527-1534.
  43. Chow FY, Nikolic-Paterson DJ, Atkins RC, Tesch GH. Macrophages in streptozotocin-induced diabetic nephropathy: Potential role in renal fibrosis. Nephrology Dialysis Transplantation. 2004;19(12):2987-2996.
  44. Zent R, Pozzi A. Angiogenesis in diabetic nephropathy. Semin Nephrol. 2007. p 161-171.
  45. Rahimi R, Nikfar S, Larijani B, Abdollahi M. A review on the role of antioxidants in the management of diabetes and its complications. Biomed Pharmacother. 2005;59(7):365-373.
  46. Kanwar YS, Wada J, Sun L, Xie P, Wallner EI, Chen S, et al. Diabetic nephropathy: Mechanisms of renal disease progression. Exp Biol Med. 2008;233(1):4-11.
  47. Gonçalves NP, Vægter CB, Pallesen LT. Peripheral glial cells in the development of diabetic neuropathy. Front Neurol. 2018;9:268.
  48. Kumar GS, Kulkarni A, Khurana A, Kaur J, Tikoo K. Selenium nanoparticles involve hsp-70 and sirt1 in preventing the progression of type 1 diabetic nephropathy. Chem Biol Interact. 2014;223:125-133.
  49. Donate-Correa J, Martín-Núñez E, Muros-de-Fuentes M, Mora-Fernández C, Navarro-González JF. Inflammatory cytokines in diabetic nephropathy. Journal of diabetes research. 2015;2015:948417.
  50. Tang J, Kern TS. Inflammation in diabetic retinopathy. Prog Retin Eye Res. 2011;30(5):343-358.
  51. Doupis J, Lyons TE, Wu S, Gnardellis C, Dinh T, Veves A. Microvascular reactivity and inflammatory cytokines in painful and painless peripheral diabetic neuropathy. J Clin Endocr Metab. 2009;94(6):2157-2163.
  52. Lim AK, Tesch GH. Inflammation in diabetic nephropathy. Mediators Inflamm. 2012;2012:ID146154, 12p.
  53. Almeida JPM, Chen AL, Foster A, Drezek R. In vivo biodistribution of nanoparticles. Nanomedicine. 2011;6(5):815-835.
  54. Chen H, Dorrigan A, Saad S, Hare DJ, Cortie MB, Valenzuela SM. In vivo study of spherical gold nanoparticles: Inflammatory effects and distribution in mice. PLoS One. 2013;8(2):e58208.
  55. Bhattacharya R, Mukherjee P, Xiong Z, Atala A, Soker S, Mukhopadhyay D. Gold nanoparticles inhibit vegf165-induced proliferation of huvec cells. Nano Lett. 2004;4(12):2479-2481
  56. Quattrini C, Jeziorska M, Boulton AJM, Malik RA. Reduced vascular endothelial growth factor expression and intraepidermal nerve fiber loss in human diabetic neuropathy. Diabetes Care. 2008;31(1):140-145.
  57. Pereira DV, Vuolo F, Galant L, Constantino L, Neto VP, Pocrifka L, et al. Effects of gold nanoparticles on vascular endothelial growth factor and its receptor in an animal model of uveitis in rats [version 1, 2 approved with reservations]. Curr Updates Nanotechnol.2017;1(2.1).
  58. Nakagawa T, Kosugi T, Haneda M, Rivard CJ, Long DA. Abnormal angiogenesis in diabetic nephropathy. Diabetes. 2009;58(7):1471-1478.
  59. Kalishwaralal K, Sheikpranbabu S, BarathManiKanth S, Haribalaganesh R, Ramkumarpandian S, Gurunathan S. Retracted article: Gold nanoparticles inhibit vascular endothelial growth factor-induced angiogenesis and vascular permeability via src dependent pathway in retinal endothelial cells. Angiogenesis. 2011;14(1):29-45.
  60. Singha S, Bhattacharya J, Datta H, Dasgupta AK. Antiglycation activity of gold nanoparticles. NanomedNanotechnol. 2009;5(1):21-29.
  61. Kumar Pasupulati A, Chitra PS, Reddy GB. Advanced glycation end products mediated cellular and molecular events in the pathology of diabetic nephropathy, BioMol Concepts. 2016;7(5-6):293-309.
  62. Liu W, Cohenford MA, Frost L, Seneviratne C, Dain JA. Inhibitory effect of gold nanoparticles on the d-ribose glycation of bovine serum albumin. Int J Nanomed. 2014; 9(1):5461-5469.
  63. Figueroa-Romero C, Sadidi M, Feldman EL. Mechanisms of disease: The oxidative stress theory of diabetic neuropathy. Rev Endocr Metab Disord. 2008; 9(4):301-314.
  64. Kim J-H, Hong C-O, Koo Y-C, Choi H-D, Lee K-W. Antiglycation effect of gold nanoparticles on collagen. Biol Pharm Bull. 2012; 35(2):260-264.
  65. Seneviratne C, Narayanan R, Liu W, Dain JA. The in vitro inhibition effect of 2 nm gold nanoparticles on non-enzymatic glycation of human serum albumin. Biochem Biophys Res Commun. 2012; 422(3):447-454.

Photo
Sachin J. Kamble
Corresponding author

Department of Chemistry, Sanjay Ghodawat Institute, Atigre, Maharashtra, India 416118

Photo
Valmiki B. Koli
Co-author

School of Nanoscience and Biotechnology, Shivaji University, Kolhapur (MS) India 416004

Sachin J. Kamble, Valmiki B. Koli, Applications Of Gold Nanoparticles In Treating Diabetes And Complications Emerging From It: A Review, Int. J. of Pharm. Sci., 2024, Vol 2, Issue 1, 857-873. https://doi.org/10.5281/zenodo.10634428

More related articles
Water Quality Monitoring In SPMVV By IOT Tools ...
K. Swathi, U. Madhavi, D. Kalyani, P. Sai Pratyusha, ...
Nanobots in Medicine ...
Iranna B. Gulagonda, Dhiraj D. Mane, Sanjay L. Dhavale, Vishal K....
Comparison Between Chlorhexidine Alcohol Solution ...
Anjali M, Rajesh Kumar, Anna James, ...
A Detailed Review On Green Synthesis Of Silver Nanoparticles Of Chamomile Extrac...
Nagalakshmi.R.Reddy, Kruthika S. G. , Manohar K. , Kruthic Revanth, Manoj Kumar, Madhushree R., ...
Hydrophilic Interaction Liquid Chromatography (Hilic)...
Ajay A, Prasanth S. S, Sanooja P. k, Jisha U, K. T. Akshara, Riya Rajan, Sibina M. K, Mohammed Faroo...
Formulation And Characterization Of Provesicular Based Drug Delivery System For ...
Akshata Rajesh Shirodker, Rajashree Gude, Suman Harisingh Vishwakarma, Eliska Wendy de Souza, Vishak...
Related Articles
Formulation and evaluation of Heel Repair Cream by using Turmeric & Mustard oil...
Gadade Pooja , Aniket Gadekar , Aniket Gorshetwar , Payali Gawali , ...
Supersaturated Drug Delivery System: An Approach To Enhance The Bioavailability...
MANOJ R. V., Parthasarathi K. Kulkarni, Nagendra R., Venkatesh K., Hanumanthachar Joshi, ...
A Case Report On Uti, Anemia, And Steroid Withdrawal In A Post-Menopausal Geriat...
Vigneswaran R., Natarajan P., Thiruppathi M., Ganesh H., Kodishwaran R., ...
Formulation And Evaluation Of Sustained Release Anastrozole Tablet For Treatment...
Vitthal S. Shinde, Vijay M. Kanade, Ajit B. Tuwar, Megha T. Salve, ...
Water Quality Monitoring In SPMVV By IOT Tools ...
K. Swathi, U. Madhavi, D. Kalyani, P. Sai Pratyusha, ...
More related articles
Water Quality Monitoring In SPMVV By IOT Tools ...
K. Swathi, U. Madhavi, D. Kalyani, P. Sai Pratyusha, ...
Nanobots in Medicine ...
Iranna B. Gulagonda, Dhiraj D. Mane, Sanjay L. Dhavale, Vishal K. Mote, Rahul A. Kedar, ...
Water Quality Monitoring In SPMVV By IOT Tools ...
K. Swathi, U. Madhavi, D. Kalyani, P. Sai Pratyusha, ...
Nanobots in Medicine ...
Iranna B. Gulagonda, Dhiraj D. Mane, Sanjay L. Dhavale, Vishal K. Mote, Rahul A. Kedar, ...