View Article

  • A Review On Role Of Artificial Intelligence In Drug Development

  • Shree Dev Bhoomi Institute Of Education Science And Technology , Village Mazhon, P. O. Poundha (Via Premnagar), Near Jaspal Rana Shooting Range), Dehradun

Abstract

Background: This abstract explores the pivotal role of artificial intelligence (AI) in revolutionizing drug development processes. Analysing vast datasets, AI facilitates target identification, drug screening, and prediction of compound interactions, expediting the discovery of novel therapeutics. The integration of AI technologies marks a transformative era in drug development, offering unprecedented opportunities for innovation and improved patient outcomes. In this review, we delve into the dynamic landscape of artificial intelligence (AI) within the realm of drug development. Our exploration encompasses a thorough examination of recent literature, dissecting how AI accelerates drug discovery, refines clinical trial processes, and propels personalized medicine initiatives. Additionally, we project into the future, unravelling potential implications that AI holds for the evolving landscape of drug development. Main body of the abstract: This review delves into AI-powered approaches, such as machine learning and deep learning GNNs, CNNs, DNNs showcasing their impact on optimizing drug design, minimizing development timelines, and enhancing overall efficiency in the pharmaceutical industry. By scrutinizing challenges and limitations, we elucidate the nuanced interplay between AI and pharmaceutical innovation. Short conclusion: AI in drug development has shown great promise in revolutionizing the pharmaceutical industry. By utilizing large datasets and advanced algorithms, AI can assist in predicting outcomes and identifying potential drug candidates. This review serves as a comprehensive guide for researchers, practitioners, and stakeholders navigating the complex and promising intersection of AI and pharmaceuticals.

Keywords

artificial intelligence, machine learning, deep learning, drug discovery, drug development, prediction

Reference

  1. Mak K. K., & Pichika M. R. (2019). Artificial intelligence in drug development: present status and future prospects. In Drug Discovery Today (Vol. 24, Issue 3, pp. 773–780). Elsevier Ltd. https://doi.org/10.1016/j.drudis.2018.11.014
  2. Smith R. G., & Farquhar A. (2000). The road ahead for knowledge management: an AI perspective. AI magazine, 21(4), 17-17.
  3. Gupta R., Srivastava D., Sahu M., Tiwari S., Ambasta R. K., & Kumar P. (2021). Artificial intelligence to deep learning: machine intelligence approach for drug discovery. Molecular Diversity, 25(3), 1315–1360. https://doi.org/10.1007/s11030- 021-10217-3
  4. Russell S. J., & Norvig P. (2010). Artificial intelligence a modern approach. London.
  5. Ramesh A. N., Kambhampati C., Monson J. R. T., & Drew P. J. (2004). Artificial intelligence in medicine. In Annals of the Royal College of Surgeons of England (Vol. 86, Issue 5, pp. 334–338). https://doi.org/10.1308/147870804290
  6. Paul D., Sanap G., Shenoy S., Kalyane D., Kalia K., & Tekade R. K. (2021). Artificial intelligence in drug discovery and development. In Drug Discovery Today (Vol. 26, Issue 1, pp. 80–93). Elsevier Ltd. https://doi.org/10.1016/j.drudis.2020.10.010
  7. Lamberti M. J., Wilkinson M., Donzanti B. A., Wohlhieter G. E., Parikh S., Wilkins R. G., & Getz K. (2019). A Study on the Application and Use of Artificial Intelligence to Support Drug Development. Clinical Therapeutics, 41(8), 1414–1426. https://doi.org/10.1016/j.clinthera.2019.05.018
  8. Vora L. K., Gholap A. D., Jetha K., Thakur R. R. S., Solanki H. K., & Chavda V. P. (2023). Artificial Intelligence in Pharmaceutical Technology and Drug Delivery Design. In Pharmaceutics (Vol. 15, Issue 7). Multidisciplinary Digital Publishing Institute (MDPI). https://doi.org/10.3390/pharmaceutics15071916
  9. Pan X., Lin X., Cao D., Zeng X., Yu P. S., He L., Nussinov R., & Cheng F. (n.d.). Deep learning for drug repurposing: methods, databases, and applications.
  10. Moshayedi A. J., Roy A. S., Kolahdooz A., & Shuxin Y. (2022). Deep Learning Application  Pros and      Cons    Over    Algorithm. https://doi.org/10.4108/10.4108/airo.v1i.19
  11. Agrawal P. (2018). Artificial Intelligence in Drug Discovery and Development. Journal of Pharmacovigilance, 06(02). https://doi.org/10.4172/2329-6887.1000e173
  12. Chopra H., Baig A. A., Gautam R. K., & Kamal M. A. (2022). Application of Artificial Intelligence in Drug Discovery. Current Pharmaceutical Design, 28(33), 2690–2703. https://doi.org/10.2174/1381612828666220608141049
  13. Das S., Dey R., & Nayak A. K. (2021). Artificial intelligence in pharmacy. In Indian Journal of Pharmaceutical Education and Research (Vol. 55, Issue 2, pp. 304–318). Association of Pharmaceutical Teachers of India. https://doi.org/10.5530/ijper.55.2.68
  14. Hagendorff T., & Wezel K. (2020). 15 challenges for AI: or what AI (currently) can’t do. AI and Society, 35(2), 355–365. https://doi.org/10.1007/s00146-019-00886-y
  15. Terranova N., Venkatakrishnan K., & Benincosa L. J. (2021). Application of Machine Learning in Translational Medicine: Current Status and Future Opportunities. In AAPS Journal (Vol. 23, Issue 4). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1208/s12248-021-00593-x
  16. Askin S., Burkhalter D., Calado G., & El Dakrouni S. (2023). Artificial Intelligence Applied to clinical trials: opportunities and challenges. Health and Technology, 13(2), 203-213.
  17. Sarkar C., Das B., Rawat V. S., Wahlang J. B., Nongpiur A., Tiewsoh I., Lyngdoh N. M., Das D., Bidarolli M., & Sony H. T. (2023). Artificial Intelligence and Machine Learning Technology Driven Modern Drug Discovery and Development. In International Journal of Molecular Sciences (Vol. 24, Issue 3). MDPI. https://doi.org/10.3390/ijms24032026
  18. Chen Z., Liu X., Hogan W., Shenkman E., & Bian J. (2020). Applications of artificial intelligence in drug development using real-world data. Drug Discovery Today, 00. https://doi.org/10.1016/j
  19. Blanco-González A., Cabezón A., Seco-González A., Conde-Torres D., Antelo-Riveiro P., Piñeiro Á., & Garcia-Fandino R. (2023). The Role of AI in Drug Discovery: Challenges, Opportunities, and Strategies. In Pharmaceuticals (Vol. 16, Issue 6). Multidisciplinary          Digital Publishing Institute (MDPI). https://doi.org/10.3390/ph16060891
  20. Jia, W., Sun, M., Lian, J., & Hou, S. (2022). Feature dimensionality reduction: a review. Complex and Intelligent Systems, 8(3), 2663–2693. https://doi.org/10.1007/s40747- 021-00637-x
  21. Chen W., Liu X., Zhang S., & Chen S. (2023). Artificial intelligence for drug discovery: Resources, methods, and applications. In Molecular Therapy - Nucleic Acids (Vol. 31, pp. 691–702). Cell Press. https://doi.org/10.1016/j.omtn.2023.02.019
  22. Jiménez-Luna J., Grisoni F., Weskamp N., & Schneider G. (2021). Artificial intelligence in drug discovery: recent advances and future perspectives. Expert Opinion on Drug Discovery, 16(9), 949–959. https://doi.org/10.1080/17460441.2021.1909567
  23. Schauperl M., & Denny R. A. (2022). AI-based protein structure prediction in drug discovery: impacts and challenges. Journal of   Chemical   Information   and Modeling, 62(13), 3142-3156. https://doi.org/10.1021/acs.jcim.2c00026
  24. Zheng S., Li Y., Chen S., Xu J., & Yang Y. (n.d.). Predicting Drug Protein Interaction using Quasi-Visual Question Answering System. https://doi.org/10.1101/588178
  25. Selvaraj C., Chandra I., & Singh S. K. (2022). Artificial intelligence and machine learning approaches for drug design: challenges and opportunities for the pharmaceutical industries. In Molecular Diversity (Vol. 26, Issue 3, pp. 1893–1913). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/s11030-021-10326-z
  26. Lodhi D. S., Verma M., Golani P., Pawar A. S., & Nagdev S. (2022). Impact of Artificial Intelligence in the Pharmaceutical Industry on Working Culture: A Review. In International Journal of Pharmaceutical Sciences and Nanotechnology (Vol. 15, Issue 1, pp. 5771–5780).           Pharma Book  Syndicate. https://doi.org/10.37285/ijpsn.2022.15.1.5
  27. Zhong X., & D’Antona A. M. (2021). Recent advances in the molecular design and applications of multispecific biotherapeutics. In Antibodies (Vol. 10, Issue 2). MDPI AG. https://doi.org/10.3390/antib10020013
  28. Chen S., & Jung Y. (2021). Deep Retrosynthetic Reaction Prediction using Local Reactivity and Global Attention. JACS Au, 1(10), 1612–1620. https://doi.org/10.1021/jacsau.1c00246
  29. Johansson S., Thakkar A., Kogej T., Bjerrum E., Genheden S., Bastys T., ... & Engkvist, O. (2019). AI-assisted synthesis prediction. Drug Discovery Today: Technologies, 32, 65-72. https://doi.org/10.1016/j.ddtec.2020.06.002
  30. Lee J. W., Maria-Solano M. A., Vu T. N. L., Yoon S., & Choi S. (2022). Big data and artificial intelligence (AI) methodologies for computer-aided drug design (CADD). In Biochemical Society Transactions (Vol. 50, Issue 1, pp. 241–252). Portland Press Ltd. https://doi.org/10.1042/BST20211240
  31. Kulkarni V. S., Alagarsamy V., Solomon V. R., Jose P. A., & Murugesan S. (2023). Drug Repurposing: An Effective Tool in Modern Drug Discovery. Russian Journal of Bioorganic Chemistry, 49(2), 157–166. https://doi.org/10.1134/S1068162023020139
  32. Kumar S., & Roy V. (2023). Repurposing Drugs: An Empowering Approach to Drug Discovery and Development. In Drug Research. Georg Thieme Verlag. https://doi.org/10.1055/a-2095-0826
  33. Bhattamisra S. K., Banerjee P., Gupta P., Mayuren J., Patra S., & Candasamy M. (2023). Artificial Intelligence in Pharmaceutical and Healthcare Research. In Big Data and Cognitive Computing (Vol. 7, Issue 1). MDPI. https://doi.org/10.3390/bdcc7010010
  34. Feng J., Phillips R. v., Malenica I., Bishara A., Hubbard A. E., Celi L. A., & Pirracchio R. (2022). Clinical artificial intelligence quality improvement: towards continual monitoring and updating of AI algorithms in healthcare. Npj Digital Medicine, 5(1). https://doi.org/10.1038/s41746-022-00611-y
  35. Kumar, P., Irfan, M., Chauhan, B., Mittal, S., & Chaturvedi, S. (2022). Significance of Clinical Trials in Drug Discovery. In J Res Med Dent Sci (Vol. 10, Issue S1). www.jrmds.in

Photo
Shiksha
Corresponding author

Shree dev bhoomi Institute of education science and technology , village Mazhon, P. O. Poundha (via Premnagar), near Jaspal Rana Shooting range), Dehradun

Photo
Neha Sodiyal
Co-author

Shree dev bhoomi Institute of education science and technology , village Mazhon, P. O. Poundha (via Premnagar), near Jaspal Rana Shooting range), Dehradun

Photo
Shivanand Patil
Co-author

Shree dev bhoomi Institute of education science and technology , village Mazhon, P. O. Poundha (via Premnagar), near Jaspal Rana Shooting range), Dehradun

Shiksha, Neha Sodiyal, Shivanand Patil, A Review On Role Of Artificial Intelligence In Drug Development, Int. J. of Pharm. Sci., 2024, Vol 2, Issue 2, 520-534. https://doi.org/10.5281/zenodo.10683990

More related articles
Occlusion In Prosthodontics: Understanding The Pri...
Dr. Shiv Kumar, Dr. Mitumani Baishya, Dr. Jitendra Khetan, Dr. Na...
Tridax procumbens (L.): A Comprehensive Pharmacolo...
Vishal Pawar, Savita Bhise, Gaurav Ghadge, Adarsh Malave, Sayali ...
Formulation and Evaluation of Sustained Release Ta...
Mayur Gokul Jayswal, Vasudev Sharma, Adnan Siddiqui, Raza Khan, S...
Encapsulation Of Itraconazole by Using Various Techniques for The Effective Drug...
Sanika Dherange, Apurva Kadam, Ruturaj Gaikar, Ajinkya Jadhav, Krishna Khamkar, Dr. Rajnikant Kakade...
The Benefit’s And Anti Microbial Effect Of Dragon Fruit ...
Gautami L. Ingle, Divya sonawane , Arvind hatkar , ...
Synthesis and Evaluation of Pyrimidine Derivatives for Urolithiasis Prevention A...
Rishabh Kumar Chandra, Suresh Kumar Nair, Nitesh Dubey, ...
Related Articles
Punica granatum L. : A Comprensive Review of Phytochemical Constituents and Biol...
Jyoti Godgeri, Geeta Patil, Madhura Anikhindi, Kaveri Kivati, ...
A Review on Fast Dissolving Tablet ...
Baijnath Pal, Kavita Lovanshi, Rita Mourya, ...
Valproic Acid Induced Hyperammonemia: A Case Report ...
Drishya L., Keziah Elizabeth Dona, Shaiju S Dharan, ...
Occlusion In Prosthodontics: Understanding The Principles and Their Impact on Tr...
Dr. Shiv Kumar, Dr. Mitumani Baishya, Dr. Jitendra Khetan, Dr. Namrta, ...
More related articles
Occlusion In Prosthodontics: Understanding The Principles and Their Impact on Tr...
Dr. Shiv Kumar, Dr. Mitumani Baishya, Dr. Jitendra Khetan, Dr. Namrta, ...
Tridax procumbens (L.): A Comprehensive Pharmacological and Therapeutic Review o...
Vishal Pawar, Savita Bhise, Gaurav Ghadge, Adarsh Malave, Sayali Mane, ...
Formulation and Evaluation of Sustained Release Tablet of an AntiDiabetic Drug V...
Mayur Gokul Jayswal, Vasudev Sharma, Adnan Siddiqui, Raza Khan, Shaikh Aaqueeb Ahmed, Afsar Shaikh, ...
Occlusion In Prosthodontics: Understanding The Principles and Their Impact on Tr...
Dr. Shiv Kumar, Dr. Mitumani Baishya, Dr. Jitendra Khetan, Dr. Namrta, ...
Tridax procumbens (L.): A Comprehensive Pharmacological and Therapeutic Review o...
Vishal Pawar, Savita Bhise, Gaurav Ghadge, Adarsh Malave, Sayali Mane, ...
Formulation and Evaluation of Sustained Release Tablet of an AntiDiabetic Drug V...
Mayur Gokul Jayswal, Vasudev Sharma, Adnan Siddiqui, Raza Khan, Shaikh Aaqueeb Ahmed, Afsar Shaikh, ...