Despite significant advancements in technology and medicine, cancer still claims te ns of millions of lives annually [1,2]. Years of research have consistently shown how dynamic the disease is, and despite better treatment options, there are still serious side effects from strong chemotherapies [3, 4]. Patients suffer when more severe therapy are required, particularly when aggressive tumors lie dormant and subsequently reappear [5-7]. The omnipresent establishment of resistance mechanisms is one of the biggest obstacles to developing an effective cancer treatment. After the primary oncogenic pathways are shut down, resistance mechanisms are triggered in parallel signaling pathways and reroute, enabling the growth of the tumor [8, 9]. The heterogeneity of tumor cells, patient tumors, genetic abnormalities, and epigenetic patterns can all restrict the effectiveness of therapeutic interventions and contribute to the development of drug resistance [10–13]. Clonal heterogeneity influences the biology of the entire tumor and is known to promote cancer growth and metastasis [14]. Although new medications and targets can improve cancer treatments, cancer's adaptive nature finds a way to survive.


Nanotechnology, Cancer Therapy


  1. Kabir, M. T., Rahman, M. H., Akter, R., Behl, T., Kaushik, D., Mittal, V. (2021). Potential Role of Curcumin and Its Nanoformulations to Treat Various Types of Cancers. Biomolecules, 11(3), 392. doi:10.3390/biom11030392
  2. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R. L., Torre, L. A., & Jemal, A. (2018). Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 68(6), 394–424. doi:10.3322/caac.21492
  3. Chen, H. H. W., & Kuo, M. T. (2017). Improving radiotherapy in cancer treatment: Promises and challenges. Oncotarget, 8(37), 62742–62758. doi:10.18632/oncotarget.18409
  4. Schirrmacher, V. (2019). From chemotherapy to biological therapy: A review of novel concepts to reduce the side effects of systemic cancer treatment (Review). International Journal of Oncology, 54(2), 407–419. doi:10.3892/ijo.2018.4661
  5. Khosravi-Shahi, P., Cabezón-Gutiérrez, L., & Custodio-Cabello, S. (2018). Metastatic triple negative breast cancer: Optimizing treatment options, new and emerging targeted therapies. Asia-Pacific Journal of Clinical Oncology, 14(1), 32–39. doi:10.1111/ajco.12748
  6. Aggarwal, R. R., Feng, F. Y., & Small, E. J. (2017). Emerging Categories of Disease in Advanced Prostate Cancer and Their Therapeutic Implications. Oncology, 31(6), 467–474.
  7. Gao, X. L., Zhang, M., Tang, Y. L., & Liang, X. H. (2017). Cancer cell dormancy: Mechanisms and implications of cancer recurrence and metastasis. OncoTargets and Therapy, 10, 5219–5228. doi:10.2147/OTT.S140854
  8. Vasan, N., Baselga, J., & Hyman, D. M. (2019). A view on drug resistance in cancer. Nature, 575(7782), 299–309. doi:10.1038/s41586-019-1730-1
  9. Rueff, J., & Rodrigues, A. S.. (2016). Cancer drug resistance p. 1. Berlin: Springer.
  10. Cappello, V., Marchetti, L., Parlanti, P., Landi, S., Tonazzini, I., Gemmi, M. (2016). Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease. Scientific Reports, 6(1), 1. doi:10.1038/s41598-016-0001-8
  11. Guo, M., Peng, Y., Gao, A., Du, C., & Herman, J. G. (2019). Biomarker Research, 7, 1.
  12. Hinohara, K., & Polyak, K. (2019). Intratumoral Heterogeneity: More Than Just Mutations. Trends in Cell Biology, 29(7), 569–579. doi:10.1016/j.tcb.2019.03.003
  13. Dimasuay, K. G., Aitken, E. H., Rosario, F., Njie, M., Glazier, J., Boeuf, P. (2017). Inhibition of placental mTOR signaling provides a link between placental malaria and reduced birthweight. BMC Medicine, 15(1), 1. doi:10.1186/s12916-016-0759-3
  14. Janiszewska, M., Tabassum, D. P., Castaño, Z., Cristea, S., Yamamoto, K. N., Kingston, N. L. (2019). Subclonal cooperation drives metastasis by modulating local and systemic immune microenvironments. Nature Cell Biology, 21(7), 879–888. doi:10.1038/s41556-019-0346-x
  15. Iwase, S., Kawaguchi, T., Tokoro, A., Yamada, K., Kanai, Y., Matsuda, Y. (2015). Assessment of Cancer-Related Fatigue, Pain, and Quality of Life in Cancer Patients at Palliative Care Team Referral: A Multicenter Observational Study (JORTC PAL-09). PLOS ONE, 10(8), e0134022. doi:10.1371/journal.pone.0134022
  16. Namazi, H., Kulish, V. V., & Wong, A. (2015). Mathematical Modelling and Prediction of the Effect of Chemotherapy on Cancer Cells. Scientific Reports, 5, 13583. doi:10.1038/srep13583
  17. Lorusso, D., Bria, E., Costantini, A., Di Maio, M., Rosti, G., & Mancuso, A. (2017). Patients’ perception of chemotherapy side effects: Expectations, doctor-patient communication and impact on quality of life – An Italian survey. European Journal of Cancer Care, 26(2), e12618. doi:10.1111/ecc.12618
  18. Moghimi-Dehkordi, B., & Safaee, A. (2012). An overview of colorectal cancer survival rates and prognosis in Asia. World Journal of Gastrointestinal Oncology, 4(4), 71–75. doi:10.4251/wjgo.v4.i4.71
  19. Welch, H. G., Schwartz, L. M., & Woloshin, S. (2000). Are increasing 5-year survival rates evidence of success against cancer? JAMA, 283(22), 2975–2978. doi:10.1001/jama.283.22.2975
  20. Blumen, H., Fitch, K., & Polkus, V. (2016). Comparison of Treatment Costs for Breast Cancer, by Tumor Stage and Type of Service. American Health and Drug Benefits, 9(1), 23–32.
  21. Falagan-Lotsch, P., Grzincic, E. M., & Murphy, C. J. (2017). New Advances in Nanotechnology-Based Diagnosis and Therapeutics for Breast Cancer: An Assessment of Active-Targeting Inorganic Nanoplatforms. Bioconjugate Chemistry, 28(1), 135–152. doi:10.1021/acs.bioconjchem.6b00591
  22. Caracciolo, G., Vali, H., Moore, A., & Mahmoudi, M. (2019). Challenges in molecular diagnostic research in cancer nanotechnology. Nano Today, 27, 6–10. doi:10.1016/j.nantod.2019.06.001
  23. Goel, S., Ni, D., & Cai, W. (2017). Harnessing the Power of Nanotechnology for Enhanced Radiation Therapy. ACS Nano, 11(6), 5233–5237. doi:10.1021/acsnano.7b03675
  24. Shi, J., Kantoff, P. W., Wooster, R., & Farokhzad, O. C. (2017). Cancer nanomedicine: Progress, challenges and opportunities. Nature Reviews. Cancer, 17(1), 20–37. doi:10.1038/nrc.2016.108
  25. Wu, L.-P., Wang, D., & Li, Z. (2020). Materials Science and Engineering. Part C, 106, 110302.
  26. Wicki, A., Witzigmann, D., Balasubramanian, V., & Huwyler, J. (2015). Nanomedicine in cancer therapy: Challenges, opportunities, and clinical applications. Journal of Controlled Release, 200, 138–157. doi:10.1016/j.jconrel.2014.12.030
  27. Truini, A., Alama, A., Dal Bello, M. G., Coco, S., Vanni, I., Rijavec, E., .?.?. Grossi, F. (2014). Clinical Applications of Circulating Tumor Cells in Lung Cancer Patients by CellSearch System. Frontiers in Oncology, 4, 242. doi:10.3389/fonc.2014.00242
  28. Miyasato, D. L., Mohamed, A. W., & Zavaleta, C. (2021) A path toward the clinical translation of nano-based imaging contrast agents. Wiley Interdisciplinary Reviews. Nanomedicine and Nanobiotechnology, 13(6), e1721. doi:10.1002/wnan.1721
  29. Chen, J., Jiang, Z., Xu, W., Sun, T., Zhuang, X., Ding, J., & Chen, X. (2020). Spatiotemporally Targeted Nanomedicine Overcomes Hypoxia-Induced Drug Resistance of Tumor Cells after Disrupting Neovasculature. Nano Letters, 20(8), 6191–6198. doi:10.1021/acs.nanolett.0c02515
  30. Kemp, J. A., Shim, M. S., Heo, C. Y., & Kwon, Y. J. (2016). “Combo” nanomedicine: Co-delivery of multi-modal therapeutics for efficient, targeted, and safe cancer therapy. Advanced Drug Delivery Reviews, 98, 3–18. doi:10.1016/j.addr.2015.10.019
  31. Perry, J. L., Reuter, K. G., Luft, J. C., Pecot, C. V., Zamboni, W., & DeSimone, J. M. (2017). Mediating Passive Tumor Accumulation through Particle Size, Tumor Type, and Location. Nano Letters, 17(5), 2879–2886. doi:10.1021/acs.nanolett.7b00021
  32. De La Rica, R., Aili, D., & Stevens, M. M. (2012). Enzyme-responsive nanoparticles for drug release and diagnostics. Advanced Drug Delivery Reviews, 64(11), 967–978. doi:10.1016/j.addr.2012.01.002
  33. Niemirowicz, K., Markiewicz, K. H., Wilczewska, A. Z., & Car, H. (2012). Magnetic nanoparticles as new diagnostic tools in medicine. Advances in Medical Sciences, 57(2), 196–207. doi:10.2478/v10039-012-0031-9
  34. Wang, J., Koo, K. M., Wang, Y., & Trau, M. (2019). Ad.V., 6, 1900730.
  35. Soda, N., Rehm, B. H. A., Sonar, P., Nguyen, N. T., & Shiddiky, M. J. A. (2019). Advanced liquid biopsy technologies for circulating biomarker detection. Journal of Materials Chemistry. B, 7(43), 6670–6704. doi:10.1039/c9tb01490j
  36. Singh, C., Mukhopadhyay, S., & Hod, I. (2021). Metal-organic framework derived nanomaterials for electrocatalysis: Recent developments for CO2 and N2 reduction. Nano Convergence, 8(1), 1. doi:10.1186/s40580-020-00251-6
  37. Davis, R. M., Campbell, J. L., Burkitt, S., Qiu, Z., Kang, S., Mehraein, M., .?.?. Zavaleta, C. (2018). A Raman Imaging Approach Using CD47 Antibody-Labeled SERS Nanoparticles for Identifying Breast Cancer and Its Potential to Guide Surgical Resection. Nanomaterials, 8(11), 953. doi:10.3390/nano8110953
  38. Xie, J., Gong, L., Zhu, S., Yong, Y., Gu, Z., & Zhao, Y. (2019). Emerging Strategies of Nanomaterial-Mediated Tumor Radiosensitization. Advanced Materials, 31(3), 1802244. doi:10.1002/adma.201802244
  39. Mieszawska, A. J., Mulder, W. J. M., Fayad, Z. A., & Cormode, D. P. (2013). Multifunctional gold nanoparticles for diagnosis and therapy of disease. Molecular Pharmaceutics, 10(3), 831–847. doi:10.1021/mp3005885
  40. Oh, J. M., Venters, C. C., Di, C., Pinto, A. M., Wan, L., .?.?. Dreyfuss, G. (2020). U1 snRNP regulates cancer cell migration and invasion in vitro. Nature Communications, 11(1), 1. doi:10.1038/s41467-019-13993-7
  41. Rebbeck, T. R., Burns-White, K., Chan, A. T., Emmons, K., Freedman, M., Hunter, D. J. (2018). Precision Prevention and Early Detection of Cancer: Fundamental Principles. Cancer Discovery, 8(7), 803–811. doi:10.1158/2159-8290.CD-17-1415
  42. Salvioni, L., Rizzuto, M. A., Bertolini, J. A., Pandolfi, L., Colombo, M., & Prosperi, D. (2019). Thirty Years of Cancer Nanomedicine: Success, Frustration, and Hope. Cancers, 11(12), 1855. doi:10.3390/cancers11121855
  43. Chan, J. M. S., Cheung, M. S. H., Gibbs, R. G. J., & Bhakoo, K. K. (2017). MRI detection of endothelial cell inflammation using targeted superparamagnetic particles of iron oxide (SPIO). Clinical and Translational Medicine, 6(1), 1. doi:10.1186/s40169-016-0134-1
  44. Beltrán-Gracia, E., López-Camacho, A., Higuera-Ciapara, I., Velázquez-Fernández, J. B., & Vallejo-Cardona, A. A. (2019). Nanomedicine review: Clinical developments in liposomal applications. Cancer Nanotechnology, 10(1), 11. doi:10.1186/s12645-019-0055-y
  45. Torchilin, V. (2011). Tumor delivery of macromolecular drugs based on the EPR effect. Advanced Drug Delivery Reviews, 63(3), 131–135. doi:10.1016/j.addr.2010.03.011
  46. Izci, M., Maksoudian, C., Manshian, B. B., & Soenen, S. J. (2021). The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chemical Reviews, 121(3), 1746–1803. doi:10.1021/acs.chemrev.0c00779
  47. Fang, J., Islam, W., & Maeda, H. (2020). Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Advanced Drug Delivery Reviews, 157, 142–160. doi:10.1016/j.addr.2020.06.005
  48. Kang, H., Rho, S., Stiles, W. R., Hu, S., Baek, Y., Hwang, D. W., Choi, H. S. (2020). Size-Dependent EPR Effect of Polymeric Nanoparticles on Tumor Targeting. Advanced Healthcare Materials, 9(1), 1901223. doi:10.1002/adhm.201901223
  49. Walkey, C. D., Olsen, J. B., Guo, H., Emili, A., & Chan, W. C. (2012). Nanoparticle size and surface chemistry determine serum protein adsorption and macrophage uptake. Journal of the American Chemical Society, 134(4), 2139–2147. doi:10.1021/ja2084338
  50. Fullstone, G., Wood, J., Holcombe, M., & Battaglia, G. (2015). Modelling the Transport of Nanoparticles under Blood Flow using an Agent-based Approach. Scientific Reports, 5, 10649. doi:10.1038/srep10649
  51. Chen, Y. Y., Syed, A. M., MacMillan, P., Rocheleau, J. V., & Chan, W. C. W. (2020). Flow Rate Affects Nanoparticle Uptake into Endothelial Cells. Advanced Materials, 32(24), 1906274. doi:10.1002/adma.201906274
  52. Gustafson, H. H., Holt-Casper, D., Grainger, D. W., & Ghandehari, H. (2015). Nanoparticle Uptake: The Phagocyte Problem. Nano Today, 10(4), 487–510. doi:10.1016/j.nantod.2015.06.006
  53. Curley, C. T., Mead, B. P., Negron, K., Kim, N., Garrison, W. J., Miller, G. W. (2020). Augmentation of brain tumor interstitial flow via focused ultrasound promotes brain-penetrating nanoparticle dispersion and transfection. Science Advances, 6(18), eaay1344. doi:10.1126/sciadv.aay1344
  54. Bartneck, M., Keul, H. A., Zwadlo-Klarwasser, G., & Groll, J. (2010). Phagocytosis independent extracellular nanoparticle clearance by human immune cells. Nano Letters, 10(1), 59–63. doi:10.1021/nl902830x
  55. Yhee, J. Y., Jeon, S., Yoon, H. Y., Shim, M. K., Ko, H., Min, J., .?.?. Kwon, I. C. (2017). Effects of tumor microenvironments on targeted delivery of glycol chitosan nanoparticles. Journal of Controlled Release, 267, 223–231. doi:10.1016/j.jconrel.2017.09.015
  56. van der Meel, R., Sulheim, E., Shi, Y., Kiessling, F., Mulder, W. J. M., & Lammers, T. (2019). Smart cancer nanomedicine. Nature Nanotechnology, 14(11), 1007–1017. doi:10.1038/s41565-019-0567-y
  57. Feng, J., Xu, M., Wang, J., Zhou, S., Liu, Y., Liu, S., .?.?. Chen, J. (2020). Sequential delivery of nanoformulated ?-mangostin and triptolide overcomes permeation obstacles and improves therapeutic effects in pancreatic cancer. Biomaterials, 241, 119907. doi:10.1016/j.biomaterials.2020.119907
  58. Wang, C., Yu, Y., Irfan, M., Xu, B., Li, J., Zhang, L., .?.?. Su, X. (2020). Rational Design of DNA Framework-Based Hybrid Nanomaterials for Anticancer Drug Delivery. Small, 16(44), 2002578. doi:10.1002/smll.202002578
  59. Rabiee, N., Bagherzadeh, M., Ghadiri, A. M., Fatahi, Y., Aldhaher, A., Makvandi, P., .?.?. Mozafari, M. (2021). ACS Applied Bio Materials, 13, 5336.
  60. Gupta, P. K., Gahtori, R., Govarthanan, K., Sharma, V., Pappuru, S., Pandit, S., .?.?. Bishi, D. K. (2021). Materials Science and Engineering. Part C, 127, 112198.
  61. Pontón, I., Martí del Rio, A., Gómez Gómez, M., & Sánchez-García, D. (2020). Preparation and Applications of Organo-Silica Hybrid Mesoporous Silica Nanoparticles for the Co-Delivery of Drugs and Nucleic Acids. Nanomaterials, 10(12), 2466. doi:10.3390/nano10122466
  62. Ye, M., Han, Y., Tang, J., Piao, Y., Liu, X., Zhou, Z., .?.?. Shen, Y. (2017). A Tumor-Specific Cascade Amplification Drug Release Nanoparticle for Overcoming Multidrug Resistance in Cancers. Advanced Materials, 29(38), 1702342. doi:10.1002/adma.201702342
  63. Norris, M. D., Seidel, K., & Kirschning, A. (2019). Advances in Therapy, 2, 1800092.
  64. Yoo, J. D., Bae, S. M., Seo, J., Jeon, I. S., Vadevoo, S. M. P., Kim, S. Y., .?.?. Kim, S. (2020). Designed ferritin nanocages displaying trimeric TRAIL and tumor-targeting peptides confer superior anti-tumor efficacy. Scientific Reports, 10(1), 19997. doi:10.1038/s41598-020-77095-x
  65. Hossen, S., Hossain, M. K., Basher, M. K., Mia, M. N. H., Rahman, M. T., & Uddin, M. J. (2019). Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: A review. Journal of Advanced Research, 15, 1–18. doi:10.1016/j.jare.2018.06.005
  66. Bargh, J. D., Isidro-Llobet, A., Parker, J. S., & Spring, D. R. (2019). Cleavable linkers in antibody-drug conjugates. Chemical Society Reviews, 48(16), 4361–4374. doi:10.1039/c8cs00676h
  67. Bhardwaj, A., Kaur, J., Wuest, M., & Wuest, F. (2017). In situ click chemistry generation of cyclooxygenase-2 inhibitors. Nature Communications, 8(1), 1. doi:10.1038/s41467-016-0009-6
  68. Guo, R. Y., Wang, H. M., Dong, X., Hu, Y., Li, J., Zang, Y., & Li, X. (2021). Selectivity Comparison of Tumor-Imaging Probes Designed Based on Various Tumor-Targeting Strategies: A Proof of Concept Study. ACS Applied Bio Materials, 4(3), 2058–2065. doi:10.1021/acsabm.0c01097
  69. Cheng, T., Zhang, Y., Liu, J., Ding, Y., Ou, H., Huang, F., .?.?. Shi, L. (2018). Ligand-Switchable Micellar Nanocarriers for Prolonging Circulation Time and Enhancing Targeting Efficiency. ACS Applied Materials and Interfaces, 10(6), 5296–5304. doi:10.1021/acsami.7b18137
  70. Rao, L., Xu, J. H., Cai, B., Liu, H., Li, M., Jia, Y., .?.?. Zhao, X. Z. (2016). Synthetic nanoparticles camouflaged with biomimetic erythrocyte membranes for reduced reticuloendothelial system uptake. Nanotechnology, 27(8), 085106. doi:10.1088/0957-4484/27/8/085106
  71. Jo, J., Yoon, J., Lee, T., Cho, H. Y., Lee, J. Y., & Choi, J. W. (2019). H2O2 biosensor consisted of hemoglobin-DNA conjugate on nanoporous gold thin film electrode with electrochemical signal enhancement. Nano Convergence, 6(1), 1. doi:10.1186/s40580-018-0172-z
  72. Tseng, S. J., Kempson, I. M., Huang, K. Y., Li, H. J., Fa, Y. C., Ho, Y. C., Yang, P. C. (2018). Targeting Tumor Microenvironment by Bioreduction-Activated Nanoparticles for Light-Triggered Virotherapy. ACS Nano, 12(10), 9894–9902. doi:10.1021/acsnano.8b02813
  73. Ovais, M., Mukherjee, S., Pramanik, A., Das, D., Mukherjee, A., Raza, A., & Chen, C. (2020). Designing Stimuli-Responsive Upconversion Nanoparticles that Exploit the Tumor Microenvironment. Advanced Materials, 32(22), e2000055. doi:10.1002/adma.202000055
  74. Liu, X., Wu, X., Xing, Y., Zhang, Y., Zhang, X., Pu, Q., .?.?. Zhao, J. X. (2020). Reduced Graphene Oxide/Mesoporous Silica Nanocarriers for pH-Triggered Drug Release and Photothermal Therapy. ACS Applied Bio Materials, 3(5), 2577–2587. doi:10.1021/acsabm.9b01108
  75. Shen, J.-M., Yin, T., Tian, X.-Z., Gao, F.-Y., & Xu, S. (2013). Surface Charge-Switchable Polymeric Magnetic Nanoparticles for the Controlled Release of Anticancer Drug. ACS Applied Materials and Interfaces, 5(15), 7014–7024. doi:10.1021/am401277s
  76. Kamaly, N., Yameen, B., Wu, J., & Farokhzad, O. C. (2016). Degradable Controlled-Release Polymers and Polymeric Nanoparticles: Mechanisms of Controlling Drug Release. Chemical Reviews, 116(4), 2602–2663. doi:10.1021/acs.chemrev.5b00346
  77. Kolosnjaj-Tabi, J., Gibot, L., Fourquaux, I., Golzio, M., & Rols, M.-P. (2019). Electric field-responsive nanoparticles and electric fields: Physical, chemical, biological mechanisms and therapeutic prospects. Advanced Drug Delivery Reviews, 138, 56–67. doi:10.1016/j.addr.2018.10.017
  78. Israel, L. L., Galstyan, A., Holler, E., & Ljubimova, J. Y. (2020). Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. Journal of Controlled Release, 320, 45–62. doi:10.1016/j.jconrel.2020.01.009
  79. Meng, Y., Zhang, D., Chen, X., Dai, Z., Yao, X., Cui, P., .?.?. Zheng, X. (2020). FePt Nanoparticles Embedded in Metal–Organic Framework Nanoparticles for Tumor Imaging and Eradication. ACS Applied Nano Materials, 3(5), 4494–4503. doi:10.1021/acsanm.0c00581
  80. Sun, B., Chang, R., Cao, S., Yuan, C., Zhao, L., Yang, H., .?.?. van Hest, J. C. M. (2020). Acid-Activatable Transmorphic Peptide-Based Nanomaterials for Photodynamic Therapy. Angewandte Chemie International Edition, 59(46), 20582–20588. doi:10.1002/anie.202008708
  81. Yao, J., Yang, M., & Duan, Y. (2014). Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: New insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chemical Reviews, 114(12), 6130–6178. doi:10.1021/cr200359p
  82. Chi, X., Huang, D., Zhao, Z., Zhou, Z., Yin, Z., & Gao, J. (2012). Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials, 33(1), 189–206. doi:10.1016/j.biomaterials.2011.09.032
  83. Zeng, Y., Li, H., Li, Z., Luo, Q., Zhu, H., Gu, Z., .?.?. Luo, K. Applied Materials Today, 20. doi:10.0686(2020)
  84. He, W., Li, S., Wang, L., Zhu, L., Zhang, Y., Luo, Y., .?.?. Xu, W. (2019). AuNPs-DNAzyme molecular motor biosensor mediated by neighborhood click chemistry reactions for the ultrasensitive detection of microRNA-155. Sensors and Actuators. Part B, 290, 503–511. doi:10.1016/j.snb.2019.04.012
  85. Chang, Z. M., Zhou, H., Yang, C., Zhang, R., You, Q., Yan, R. (2020). Biomimetic immunomagnetic gold hybrid nanoparticles coupled with inductively coupled plasma mass spectrometry for the detection of circulating tumor cells. Journal of Materials Chemistry. B, 8(23), 5019–5025. doi:10.1039/d0tb00403k
  86. Wu, S., Gu, L., Qin, J., Zhang, L., Sun, F., Liu, Z., .?.?. Shi, D. (2020). Rapid Label-Free Isolation of Circulating Tumor Cells from Patients’ Peripheral Blood Using Electrically Charged Fe 3 O 4 Nanoparticles. ACS Applied Materials and Interfaces, 12(4), 4193–4203. doi:10.1021/acsami.9b16385
  87. Ding, P., Wang, Z., Wu, Z., Hu, M., Zhu, W., Sun, N., & Pei, R. (2021). Tannic Acid (TA)-Functionalized Magnetic Nanoparticles for EpCAM-Independent Circulating Tumor Cell (CTC) Isolation from Patients with Different Cancers. ACS Applied Materials and Interfaces, 13(3), 3694–3700. doi:10.1021/acsami.0c20916
  88. Aggarwal, S. (2010). Targeted cancer therapies. Nature Reviews. Drug Discovery, 9(6), 427–428. doi:10.1038/nrd3186
  89. Woods, D., & Turchi, J. J. (2013). Chemotherapy induced DNA damage response: Convergence of drugs and pathways. Cancer Biology and Therapy, 14(5), 379–389. doi:10.4161/cbt.23761
  90. Azevedo, R. S. S., de Sousa, J. R., Araujo, M. T. F., Martins Filho, A. J., de Alcantara, B. N., .?.?. Vasconcelos, P. F. C. (2018). In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus. Scientific Reports, 8(1), 1. doi:10.1038/s41598-017-17765-5
  91. Pearce, A., Haas, M., Viney, R., Pearson, S. A., Haywood, P., Brown, C., & Ward, R. (2017). Incidence and severity of self-reported chemotherapy side effects in routine care: A prospective cohort study. PLOS ONE, 12(10), e0184360. doi:10.1371/journal.pone.0184360
  92. Mossmann, D., Park, S., & Hall, M. N. (2018). mTOR signalling and cellular metabolism are mutual determinants in cancer. Nature Reviews. Cancer, 18(12), 744–757. doi:10.1038/s41568-018-0074-8
  93. Moore, A. R., Rosenberg, S. C., McCormick, F., & Malek, S. (2020). RAS-targeted therapies: Is the undruggable drugged? Nature Reviews. Drug Discovery, 19(8), 533–552. doi:10.1038/s41573-020-0068-6
  94. Lee, Y. T., Tan, Y. J., & Oon, C. E. (2018). Molecular targeted therapy: Treating cancer with specificity. European Journal of Pharmacology, 834, 188–196. doi:10.1016/j.ejphar.2018.07.034
  95. Greten, F. R., & Grivennikov, S. I. (2019). Inflammation and Cancer: Triggers, Mechanisms, and Consequences. Immunity, 51(1), 27–41. doi:10.1016/j.immuni.2019.06.025
  96. Baguley, B. J., Skinner, T. L., Leveritt, M. D., & Wright, O. R. (2017). Nutrition therapy with high intensity interval training to improve prostate cancer-related fatigue in men on androgen deprivation therapy: A study protocol. BMC Cancer, 17(1), 1. doi:10.1186/s12885-016-3022-6
  97. Baguley, B. J., Skinner, T. L., Leveritt, M. D., & Wright, O. R. (2017). Nutrition therapy with high intensity interval training to improve prostate cancer-related fatigue in men on androgen deprivation therapy: A study protocol. BMC Cancer, 17(1), 1. doi:10.1186/s12885-016-3022-6
  98. Maishi, N., & Hida, K. (2017). Tumor endothelial cells accelerate tumor metastasis. Cancer Science, 108(10), 1921–1926. doi:10.1111/cas.13336
  99. Sahai, E., Astsaturov, I., Cukierman, E., DeNardo, D. G., Egeblad, M., Evans, R. M. (2020). A framework for advancing our understanding of cancer-associated fibroblasts. Nature Reviews. Cancer, 20(3), 174–186. doi:10.1038/s41568-019-0238-1
  100. Hoxhaj, G., & Manning, B. D. (2020). The PI3K-AKT network at the interface of oncogenic signalling and cancer metabolism. Nature Reviews. Cancer, 20(2), 74–88. doi:10.1038/s41568-019-0216-7
  101. Yuan, J., Ng, W. H., Tian, Z., Yap, J., Baccarini, M., Chen, Z., & Hu, J. (2018). Activating mutations in MEK1 enhance homodimerization and promote tumorigenesis. Science Signaling, 11(554), eaar6795. doi:10.1126/scisignal.aar6795
  102. Barbosa, R., Acevedo, L. A., & Marmorstein, R. (2021). The MEK/ERK Network as a Therapeutic Target in Human Cancer. Molecular Cancer Research, 19(3), 361–374. doi:10.1158/1541-7786.MCR-20-0687
  103. Ryan, M. B., & Corcoran, R. B. (2018). Therapeutic strategies to target RAS-mutant cancers. Nature Reviews. Clinical Oncology, 15(11), 709–720. doi:10.1038/s41571-018-0105-0
  104. Timmins, P. (2021). Therapeutic Delivery
  105. Pines, G., Köstler, W. J., & Yarden, Y. (2010). Oncogenic mutant forms of EGFR: Lessons in signal transduction and targets for cancer therapy. FEBS Letters, 584(12), 2699–2706. doi:10.1016/j.febslet.2010.04.019
  106. Gao, X., Xia, X., Li, F., Zhang, M., Zhou, H., Wu, X., .?.?. Zhang, N. (2021). Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigenicity through activation of EGFR-STAT3 signalling. Nature Cell Biology, 23(3), 278–291. doi:10.1038/s41556-021-00639-4
  107. Workman, P., Draetta, G. F., Schellens, J. H. M., & Bernards, R. (2017). How Much Longer Will We Put Up With $100,000 Cancer Drugs? Cell, 168(4), 579–583. doi:10.1016/j.cell.2017.01.034
  108. McNamee, L. M., Walsh, M. J., & Ledley, F. D. (2017). Timelines of translational science: From technology initiation to FDA approval. PLOS ONE, 12(5), e0177371. doi:10.1371/journal.pone.0177371
  109. Bell, C. C., & Gilan, O. (2020). Principles and mechanisms of non-genetic resistance in cancer. British Journal of Cancer, 122(4), 465–472. doi:10.1038/s41416-019-0648-6
  110. Nwosu, Z. C., Pioro?ska, W., Battello, N., Zimmer, A. D., Dewidar, B., Han, M., Charlestin, V. EBiomedicine, 54. doi:10.2699(2020)
  111. Gupta, S. K., Singh, P., Ali, V., & Verma, M. (2020). Role of membrane-embedded drug efflux ABC transporters in the cancer chemotherapy. Oncology Reviews, 14(2), 448. doi:10.4081/oncol.2020.448
  112. Ward, R. A., Fawell, S., & Floc, N.’h, V. Flemington, D. McKerrecher, P.D. Smith, Chem. Rev. 121(6), 3297–3351 (2020).
  113. Carceles-Cordon, M., Kelly, W. K., Gomella, L., Knudsen, K. E., Rodriguez-Bravo, V., & Domingo-Domenech, J. (2020). Cellular rewiring in lethal prostate cancer: The architect of drug resistance. Nature Reviews. Urology, 17(5), 292–307. doi:10.1038/s41585-020-0298-8
  114. Kushwah, V., Katiyar, S. S., Dora, C. P., Kumar Agrawal, A. K., Lamprou, D. A., Gupta, R. C., & Jain, S. (2018). Co-delivery of docetaxel and gemcitabine by anacardic acid modified self-assembled albumin nanoparticles for effective breast cancer management. Acta Biomaterialia, 73, 424–436. doi:10.1016/j.actbio.2018.03.057
  115. Krauss, A. C., Gao, X., Li, L., Manning, M. L., Patel, P., Fu, W. (2019). FDA Approval Summary: (Daunorubicin and Cytarabine) Liposome for Injection for the Treatment of Adults with High-Risk Acute Myeloid Leukemia. Clinical Cancer Research, 25(9), 2685–2690. doi:10.1158/1078-0432.CCR-18-2990
  116. Lim, W. S., Tardi, P. G., Dos Santos, N., Xie, X., Fan, M., Liboiron, B. D., .?.?. Mayer, L. D. (2010). Leukemia-selective uptake and cytotoxicity of CPX-351, a synergistic fixed-ratio cytarabine:daunorubicin formulation, in bone marrow xenografts. Leukemia Research, 34(9), 1214–1223. doi:10.1016/j.leukres.2010.01.015
  117. Goldberg, M. S. (2019). Improving cancer immunotherapy through nanotechnology. Nature Reviews. Cancer, 19(10), 587–602. doi:10.1038/s41568-019-0186-9
  118. Craig, M., Jenner, A. L., Namgung, B., Lee, L. P., & Goldman, A. (2021). Engineering in Medicine To Address the Challenge of Cancer Drug Resistance: From Micro- and Nanotechnologies to Computational and Mathematical Modeling. Chemical Reviews, 121(6), 3352–3389. doi:10.1021/acs.chemrev.0c00356
  119. Frame, F. M., Noble, A. R., Klein, S., Walker, H. F., Suman, R., Kasprowicz, R., Cancer, J. (2017). Metastasis treat, 3, 302.
  120. Piffoux, M., Silva, A. K. A., Wilhelm, C., Gazeau, F., & Tareste, D. (2018). Modification of Extracellular Vesicles by Fusion with Liposomes for the Design of Personalized Biogenic Drug Delivery Systems. ACS Nano, 12(7), 6830–6842. doi:10.1021/acsnano.8b02053
  121. Cai, Z., Zhang, Y., He, Z., Jiang, L. P., & Zhu, J. J. (2020). NIR-Triggered Chemo-Photothermal Therapy by Thermosensitive Gold Nanostar@Mesoporous Silica@Liposome-Composited Drug Delivery Systems. ACS Applied Bio Materials, 3(8), 5322–5330. doi:10.1021/acsabm.0c00651
  122. Zhen, Y., Ewert, K. K., Fisher, W. S., Steffes, V. M., Li, Y., & Safinya, C. R. (2021). Paclitaxel loading in cationic liposome vectors is enhanced by replacement of oleoyl with linoleoyl tails with distinct lipid shapes. Scientific Reports, 11(1), 7311. doi:10.1038/s41598-021-86484-9
  123. Ciarimboli, G. (2014). Membrane transporters as mediators of cisplatin side-effects. Anticancer Research, 34(1), 547–550.
  124. Larsen, J. E., Henriksen, J. R., Bæksted, M., Andresen, T. L., Jacobsen, G. K., & Jørgensen, K. (2006). Clinical Cancer Research, 12, 19.
  125. Cummings, B. S. (2007). Phospholipase A2 as targets for anti-cancer drugs. Biochemical Pharmacology, 74(7), 949–959. doi:10.1016/j.bcp.2007.04.021
  126. Zhou, Z., Liu, X., Zhu, D., Wang, Y., Zhang, Z., Zhou, X., .?.?. Shen, Y. (2017). Nonviral cancer gene therapy: Delivery cascade and vector nanoproperty integration. Advanced Drug Delivery Reviews, 115, 115–154. doi:10.1016/j.addr.2017.07.021
  127. Lugin, M. L., Lee, R. T., & Kwon, Y. J. (2020). Synthetically Engineered Adeno-Associated Virus for Efficient, Safe, and Versatile Gene Therapy Applications. ACS Nano, 14(11), 14262–14283. doi:10.1021/acsnano.0c03850
  128. Muir, K. L., Kallam, A., Koepsell, S. A., & Gundabolu, K. (2021). Thrombotic Thrombocytopenia after Ad26.COV2.S Vaccination. New England Journal of Medicine, 384(20), 1964–1965. doi:10.1056/NEJMc2105869
  129. Eyre, D. W., Lumley, S. F., Wei, J., Cox, S., James, T., Justice, A. (2021). Quantitative SARS-CoV-2 anti-spike responses to Pfizer-BioNTech and Oxford-AstraZeneca vaccines by previous infection status. Clinical Microbiology and Infection, 27(10), 1516.e7–1516.e14. doi:10.1016/j.cmi.2021.05.041
  130. Judge, A. D., Robbins, M., Tavakoli, I., Levi, J., Hu, L., Fronda, A., .?.?. MacLachlan, I. (2009). Confirming the RNAi-mediated mechanism of action of siRNA-based cancer therapeutics in mice. Journal of Clinical Investigation, 119(3), 661–673. doi:10.1172/JCI37515
  131. Huang, J., Xiao, D., Li, G., Ma, J., Chen, P., Yuan, W. (2014). EphA2 promotes epithelial-mesenchymal transition through the Wnt/?-catenin pathway in gastric cancer cells. Oncogene, 33(21), 2737–2747. doi:10.1038/onc.2013.238
  132. Fabregat, I., & Caballero-Díaz, D. (2018). Transforming Growth Factor-?-Induced Cell Plasticity in Liver Fibrosis and Hepatocarcinogenesis. Frontiers in Oncology, 8, 357. doi:10.3389/fonc.2018.00357
  133. Molyneaux, M., Xu, J., Evans, D. M., & Lu, P. (2019). American Journal of Clinical Oncology, 37, 15.
  134. Chawla, S. P., Bruckner, H., Morse, M. A., Assudani, N., Hall, F. L., & Gordon, E. M. (2019). A Phase I-II Study Using Rexin-G Tumor-Targeted Retrovector Encoding a Dominant-Negative Cyclin G1 Inhibitor for Advanced Pancreatic Cancer. Molecular Therapy Oncolytics, 12, 56–67. doi:10.1016/j.omto.2018.12.005
  135. Van Niel, G., D’Angelo, G., & Raposo, G. (2018). Shedding light on the cell biology of extracellular vesicles. Nature Reviews. Molecular Cell Biology, 19(4), 213–228. doi:10.1038/nrm.2017.125
  136. Ung, T. H., Madsen, H. J., Hellwinkel, J. E., Lencioni, A. M., & Graner, M. W. (2014). Exosome proteomics reveals transcriptional regulator proteins with potential to mediate downstream pathways. Cancer Science, 105(11), 1384–1392. doi:10.1111/cas.12534
  137. Bebelman, M. P., Bun, P., Huveneers, S., van Niel, G., Pegtel, D. M., & Verweij, F. J. (2020). Real-time imaging of multivesicular body-plasma membrane fusion to quantify exosome release from single cells. Nature Protocols, 15(1), 102–121. doi:10.1038/s41596-019-0245-4
  138. Kibria, G., Ramos, E. K., Wan, Y., Gius, D. R., & Liu, H. (2018). Exosomes as a Drug Delivery System in Cancer Therapy: Potential and Challenges. Molecular Pharmaceutics, 15(9), 3625–3633. doi:10.1021/acs.molpharmaceut.8b00277
  139. Kamerkar, S., LeBleu, V. S., Sugimoto, H., Yang, S., Ruivo, C. F., Melo, S. A., Kalluri, R. (2017). Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature, 546(7659), 498–503. doi:10.1038/nature22341
  140. Gildener-Leapman, N., Ferris, R. L., & Bauman, J. E. (2013). Promising systemic immunotherapies in head and neck squamous cell carcinoma. Oral Oncology, 49(12), 1089–1096. doi:10.1016/j.oraloncology.2013.09.009
  141. Jou, J., Harrington, K. J., Zocca, M. B., Ehrnrooth, E., & Cohen, E. E. W. (2021). The Changing Landscape of Therapeutic Cancer Vaccines-Novel Platforms and Neoantigen Identification. Clinical Cancer Research, 27(3), 689–703. doi:10.1158/1078-0432.CCR-20-0245
  142. Kunitski, M., Eicke, N., Huber, P., Köhler, J., Zeller, S., .?.?. Dörner, R. (2019). Double-slit photoelectron interference in strong-field ionization of the neon dimer. Nature Communications, 10(1), 1. doi:10.1038/s41467-018-07882-8
  143. Stauss, H. J., Morris, E. C., & Abken, H. (2015). Cancer gene therapy with T cell receptors and chimeric antigen receptors. Current Opinion in Pharmacology, 24, 113–118. doi:10.1016/j.coph.2015.08.006
  144. Thomas, R., Al-Khadairi, G., Roelands, J., Hendrickx, W., Dermime, S., Bedognetti, D., & Decock, J. (2018). NY-ESO-1 Based Immunotherapy of Cancer: Current Perspectives. Frontiers in Immunology, 9, 947. doi:10.3389/fimmu.2018.00947
  145. Lam, P. Y., Nissen, M. D., & Mattarollo, S. R. (2017). Invariant Natural Killer T Cells in Immune Regulation of Blood Cancers: Harnessing Their Potential in Immunotherapies. Frontiers in Immunology, 8, 1355. doi:10.3389/fimmu.2017.01355
  146. Oleinika, K., Rosser, E. C., Matei, D. E., Nistala, K., Bosma, A., Drozdov, I., & Mauri, C. (2018). CD1d-dependent immune suppression mediated by regulatory B cells through modulations of iNKT cells. Nature Communications, 9(1), 684. doi:10.1038/s41467-018-02911-y
  147. Azevedo, R. S. S., de Sousa, J. R., Araujo, M. T. F., Martins Filho, A. J., de Alcantara, B. N., Vasconcelos, P. F. C. (2018). In situ immune response and mechanisms of cell damage in central nervous system of fatal cases microcephaly by Zika virus. Scientific Reports, 8(1), 1. doi:10.1038/s41598-017-17765-5
  148. Lee, Y. J., Wang, H., Starrett, G. J., Phuong, V., Jameson, S. C., & Hogquist, K. A. (2015). Tissue-Specific Distribution of iNKT Cells Impacts Their Cytokine Response. Immunity, 43(3), 566–578. doi:10.1016/j.immuni.2015.06.025
  149. Yang, J., Arya, S., Lung, P., Lin, Q., Huang, J., & Li, Q. (2019). Hybrid nanovaccine for the co-delivery of the mRNA antigen and adjuvant. Nanoscale, 11(45), 21782–21789. doi:10.1039/c9nr05475h
  150. Maraskovsky, E., Sjölander, S., Drane, D. P., Schnurr, M., Le, T. T., Mateo, L. (2004). NY-ESO-1 protein formulated in ISCOMATRIX adjuvant is a potent anticancer vaccine inducing both humoral and CD8+ t-cell-mediated immunity and protection against NY-ESO-1+ tumors. Clinical Cancer Research, 10(8), 2879–2890. doi:10.1158/1078-0432.ccr-03-0245
  151. Tuthill, M. H., Montinaro, A., Zinngrebe, J., Prieske, K., Draber, P., Prieske, S., .?.?. Walczak, H. (2015). TRAIL-R2-specific antibodies and recombinant TRAIL can synergise to kill cancer cells. Oncogene, 34(16), 2138–2144. doi:10.1038/onc.2014.156
  152. Lim, S. M., Kim, T. H., Jiang, H. H., Park, C. W., Lee, S., Chen, X., & Lee, K. C. (2011). Improved biological half-life and anti-tumor activity of TNF-related apoptosis-inducing ligand (TRAIL) using PEG-exposed nanoparticles. Biomaterials, 32(13), 3538–3546. doi:10.1016/j.biomaterials.2011.01.054
  153. Zhao, P., Tang, X., & Huang, Y. (2021). Teaching new tricks to old dogs: A review of drug repositioning of disulfiram for cancer nanomedicine. View, 2(4), 20200127. doi:10.1002/VIW.20200127
  154. Ma, C. X., Cai, S., Li, S., Ryan, C. E., Guo, Z., Schaiff, W. T. (2012). Targeting Chk1 in p53-deficient triple-negative breast cancer is therapeutically beneficial in human-in-mouse tumor models. Journal of Clinical Investigation, 122(4), 1541–1552. doi:10.1172/JCI58765
  155. Byrd, T. T., Fousek, K., Pignata, A., Szot, C., Samaha, H., .?.?. Ahmed, N. (2018) TEM8/ANTXR1-Specific CAR T Cells as a Targeted Therapy for Triple-Negative Breast Cancer. Cancer Research, 78(2), 489–500. doi:10.1158/0008-5472.CAN-16-1911
  156. Xu, J., Liu, Y., Li, Y., Wang, H., Stewart, S., Van der Jeught, K., .?.?. He, X. (2019). Precise targeting of POLR2A as a therapeutic strategy for human triple negative breast cancer. Nature Nanotechnology, 14(4), 388–397. doi:10.1038/s41565-019-0381-6
  157. Jiang, C. T., Chen, K. G., Liu, A., Huang, H., Fan, Y. N., Zhao, D. K., .?.?. Wang, J. (2021). Immunomodulating nano-adaptors potentiate antibody-based cancer immunotherapy. Nature Communications, 12(1), 1359. doi:10.1038/s41467-021-21497-6
  158. YashRoy, R. C.. (2017). Nanostructures for Antimicrobial Therapy p. 341. Amsterdam: Elsevier.
  159. Gerritzen, M. J. H., Martens, D. E., Wijffels, R. H., van der Pol, L., & Stork, M. (2017). Bioengineering bacterial outer membrane vesicles as vaccine platform. Biotechnology Advances, 35(5), 565–574. doi:10.1016/j.biotechadv.2017.05.003
  160. Huo, M., Wang, H., Zhang, Y., Cai, H., Zhang, P., Li, L., .?.?. Yin, T. (2020). Co-delivery of silybin and paclitaxel by dextran-based nanoparticles for effective anti-tumor treatment through chemotherapy sensitization and microenvironment modulation. Journal of Controlled Release, 321, 198–210. doi:10.1016/j.jconrel.2020.02.017
  161. Xu-Monette, Z. Y., Zhang, M., Li, J., & Young, K. H. (2017). PD-1/PD-L1 Blockade: Have We Found the Key to Unleash the Antitumor Immune Response? Frontiers in Immunology, 8, 1597. doi:10.3389/fimmu.2017.01597
  162. Moore, G. W. K., Howell, S. E. L., Brady, M., Xu, X., & McNeil, K. (2021). Anomalous collapses of Nares Strait ice arches leads to enhanced export of Arctic sea ice. Nature Communications, 12(1), 1. doi:10.1038/s41467-020-20314-w
  163. Zhang, B. B., Chen, X. J., Fan, X. D., Zhu, J. J., Wei, Y. H., Zheng, H. S., .?.?. Li, F. Z. (2021). Lipid/PAA-coated mesoporous silica nanoparticles for dual-pH-responsive codelivery of arsenic trioxide/paclitaxel against breast cancer cells. Acta Pharmacologica Sinica, 42(5), 832–842. doi:10.1038/s41401-021-00648-x
  164. Choi, J., Kim, G., Cho, S. B., & Im, H. J. (2020). Radiosensitizing high-Z metal nanoparticles for enhanced radiotherapy of glioblastoma multiforme. Journal of Nanobiotechnology, 18(1), 122. doi:10.1186/s12951-020-00684-5
  165. Rahman, W. N., Bishara, N., Ackerly, T., He, C. F., Jackson, P., Wong, C., .?.?. Geso, M. (2009). Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy. Nanomedicine: Nanotechnology, Biology and Medicine, 5(2), 136–142. doi:10.1016/j.nano.2009.01.014
  166. Lux, F., Tran, V. L., Thomas, E., Dufort, S., Rossetti, F., Martini, M. (2019). AGuIX® from bench to bedside-Transfer of an ultrasmall theranostic gadolinium-based nanoparticle to clinical medicine. British Journal of Radiology, 92(1093), 20180365. doi:10.1259/bjr.20180365
  167. Mignot, A., Truillet, C., Lux, F., Sancey, L., Louis, C., Denat, F. (2013). A Top-Down Synthesis Route to Ultrasmall Multifunctional Gd-Based Silica Nanoparticles for Theranostic Applications. Chemistry – A European Journal, 19(19), 6122–6136. doi:10.1002/chem.201203003
  168. Du, Y., Sun, H., Lux, F., Xie, Y., Du, L., Xu, C. (2020). Radiosensitization Effect of AGuIX, a Gadolinium-Based Nanoparticle, in Nonsmall Cell Lung Cancer. ACS Applied Materials and Interfaces, 12(51), 56874–56885. doi:10.1021/acsami.0c16548
  169. Bonvalot, S., Le Pechoux, C., De Baere, T., Kantor, G., Buy, X., Stoeckle, E. (2017). First-in-Human Study Testing a New Radioenhancer Using Nanoparticles (NBTXR3) Activated by Radiation Therapy in Patients with Locally Advanced Soft Tissue Sarcomas. Clinical Cancer Research, 23(4), 908–917. doi:10.1158/1078-0432.CCR-16-1297
  170. Bonvalot, S., Rutkowski, P. L., Thariat, J., Carrère, S., Ducassou, A., Sunyach, M. P. (2019). NBTXR3, a first-in-class radioenhancer hafnium oxide nanoparticle, plus radiotherapy versus radiotherapy alone in patients with locally advanced soft-tissue sarcoma (Act.In.Sarc): A multicentre, phase 2-3, randomised, controlled trial. Lancet. Oncology, 20(8), 1148–1159. doi:10.1016/S1470-2045(19)30326-2
  171. Jung, J., Yoon, S. M., Kim, S. Y., Cho, B., Park, J.-H., Kim, S. S., .?.?. Choi, E. K. (2013). Radiology and Oncology, 8, 1.
  172. Hsieh, C. E., Venkatesulu, B. P., Lee, C. H., Hung, S. P., Wong, P. F., Aithala, S. P. (2019). Predictors of Radiation-Induced Liver Disease in Eastern and Western Patients With Hepatocellular Carcinoma Undergoing Proton Beam Therapy. International Journal of Radiation Oncology, Biology, Physics, 105(1), 73–86. doi:10.1016/j.ijrobp.2019.02.032
  173. Witt, J. S., Rosenberg, S. A., & Bassetti, M. F. (2020). MRI-guided adaptive radiotherapy for liver tumours: Visualising the future. Lancet. Oncology, 21(2), e74–e82. doi:10.1016/S1470-2045(20)30034-6.

Damini G. Sonawane
Corresponding author

S.N.D. College of Pharmacy, Babhulgaon- Yeola, Maharashtra, India.

Pankaj Shirsath

S.N.D. College of Pharmacy, Babhulgaon- Yeola, Maharashtra, India.

Damini G. Sonawane*, Pankaj Shirsath, Applications Of Nanotechnology In Cancer Therapy, Int. J. in Pharm. Sci., 2023, Vol 1, Issue 9, 162-183.

More related articles
Formulation And In vitro Evaluation Of Bilayer Tab...
Mayur Aware, Sheetal Gondkar, Rishikesh Bachhav, ...
A Comprehensive Review On Herbal Plants Showing An...
Saurabh Dumbre, Gaurav Gawade, Swati Jadhav, Pravin Khamkar, ...
Bilayer Floating Tablet : A Novel Floating Tablet...
Mayur Aware, Sheetal Gondkar, Rishikesh Bachhav, ...
Related Articles
Ayurvedic Remedies of Bacterial Meningitis...
Komal Ushir, Dinesh Rishipathak, Pragati Bhosale, Manisha Raut, ...
More related articles
A Comprehensive Review On Herbal Plants Showing Anti Diabetic Activity...
Saurabh Dumbre, Gaurav Gawade, Swati Jadhav, Pravin Khamkar, ...
Bilayer Floating Tablet : A Novel Floating Tablet...
Mayur Aware, Sheetal Gondkar, Rishikesh Bachhav, ...
A Comprehensive Review On Herbal Plants Showing Anti Diabetic Activity...
Saurabh Dumbre, Gaurav Gawade, Swati Jadhav, Pravin Khamkar, ...
Bilayer Floating Tablet : A Novel Floating Tablet...
Mayur Aware, Sheetal Gondkar, Rishikesh Bachhav, ...