View Article

Abstract

Nanoemulsions are submicron-sized colloidal dispersions composed of two immiscible liquids stabilized by surfactants. With droplet sizes typically ranging from 20 to 200 nm, nanoemulsion have attracted significant attention in pharmaceuticals, cosmetics, food, and agricultural industries due to their high kinetic stability, optical transparency, and enhanced bioavailability of encapsulated compounds. This review summarizes the composition, methods of preparation, characterization techniques, advantages, and applications of nanoemulsions, along with recent advancements and challenges in their development.

Keywords

Nanoemulsions, Submicron colloidal systems, Enhanced bioavailability, Surfactant stabilization, Drug delivery systems

Introduction

Emulsions are heterogeneous systems consisting of two immiscible liquids—commonly oil and water—where one phase is dispersed as droplets within the other. When the droplet size is reduced to the nanometer range, the system is referred to as a nanoemulsion. Unlike microemulsions, nanoemulsions are thermodynamically unstable but kinetically stable, meaning they can remain stable for long durations without phase separation. Nanoemulsions have become a promising carrier system for poorly water-soluble drugs, nutraceuticals, and bioactive compounds. Their small droplet size enhances surface area, solubility, absorption, and controlled release, making them highly desirable in modern formulation science. 

Composition of Nanoemulsions 

A typical nanoemulsion consists of: 

  • Oil phase: Usually composed of triglycerides, medium-chain fatty acids, or essential oils. 
  • Aqueous phase: Generally water or buffer solution. 
  • Surfactant and co-surfactant: Used to reduce interfacial tension and stabilize droplets. Common surfactants include Tween 80, Span 20, and lecithin. 
  • Active ingredient: The drug or bioactive compound to be delivered. 

Methods of Preparation 

Nanoemulsions can be prepared using either high-energy or lowenergy methods. 

1. High-Energy Methods 

  • High-pressure homogenization 
  • Ultrasonication 
  • Microfluidization 

These methods use mechanical energy to reduce droplet size to the nanometer range. 

2. Low-Energy Methods 

  • Phase inversion temperature (PIT) method 
  • Spontaneous emulsification 
  • Solvent displacement 

These techniques rely on physicochemical properties such as temperature or composition changes to form nano-sized droplets without high mechanical energy input. 

Characterization of Nanoemulsions 

Characterization is essential to determine droplet size, stability, and performance. Common techniques include: 

  • Dynamic Light Scattering (DLS): For droplet size and polydispersity index. 
  • Zeta potential analysis: Indicates surface charge and stability. 
  • Transmission Electron Microscopy (TEM): For visualizing droplet morphology. 
  • Viscosity and pH measurement 
  • Stability studies: Evaluate creaming, coalescence, and phase separation. 

Advantages of Nanoemulsions  

  • Enhanced solubility and bioavailability of hydrophobic drugs 
  • Controlled and targeted drug delivery 
  • Improved stability of sensitive bioactives 
  • Transparent or translucent appearance suitable for cosmetic use 
  • Ease of scale-up and production 

Applications 

1. Pharmaceutical Industry 

Used for oral, topical, intravenous, and ocular drug delivery to improve absorption and therapeutic efficiency. 

2. Food Industry 

Nanoemulsions are applied for encapsulating flavors, vitamins, and antioxidants to enhance stability and bioavailability. 

3. Cosmetics 

Employed in creams, lotions, and serums to enhance penetration of active ingredients and improve texture. 

4. Agriculture 

Used for pesticide delivery and controlled release of agrochemicals with reduced environmental impact. 

Challenges and Future Perspectives  

Despite their advantages, nanoemulsions face challenges such as thermodynamic instability, potential toxicity of surfactants, and

scale-up difficulties. Future research focuses on developing biocompatible, sustainable, and cost-effective nanoemulsion systems using natural surfactants and green preparation methods. 

Nanoemulsion

CONCLUSION 

Nanoemulsions represent a versatile and efficient delivery system capable of overcoming solubility and stability challenges of hydrophobic compounds. With ongoing advancements in formulation science and nanotechnology, nanoemulsions hold immense potential in pharmaceuticals, food, cosmetics, and agriculture. However, further studies on long-term safety, regulatory acceptance, and large-scale production are essential for their commercial success. 

REFERENCES

  1. Sloan’s, C., Izquierdo, P., Nolla, J., Azemar, N., & GarciaCelma, M. J. (2005). Nano-emulsions. Current Opinion in Colloid & Interface Science, 10(3–4), 102– 110. 
  2. McClements, D. J. (2012). Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 8(6), 1719–1729. 
  3. Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: formation, properties and applications. Soft Matter, 12(11), 2826–2841. 
  4. Thukral DK, Dumoga S, Mishra AK. Solid lipid nano particles: promising therapeutic nano carriers for drug delivery. Curr Drug Deliv. 2014;11(6):771-91.http:// dx.doi.org/10.2174/156720181106141202122335;PMi d:25 469779. 
  5. Pawar KR, Babu RJ. Lipid materials for topical and transdermal delivery of nano emulsions. Crit Rev Ther Drug Carrier Syst. 2014;31(5):429-58. http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2 014010663. 
  6. Ganta S, Talekar M, Singh A, Coleman TP, Amiji MM. Nano emulsions in translational research-opportunities and challenges in targeted cancer therapy. AAPSPharm Sci Tech.2014;15(3):694-708. http://dx.doi.org/10.1208/s12249-01400889;PMid:24510526PMCid:PMC4037485. 
  7. Cerpnjak K, Zvonar A, Gašperlin M, Vreer F. Lipidbased systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Act a Pharm. 2013;63(4):427-45. http://dx.doi.org/10.2478/acph-2013 0040;PMid:24451070. 
  8. Odriozola-Serrano I, Oms-Oliu G, Martín-Belloso O. Nano emulsion-based delivery systems to improve functionality of lipophilic components. Front Nutr.2014;5(1):24. 
  9. Mc Clements DJ. Nano emulsion-based oral delivery systems for lipophilic bioactive components: nutraceuticals and pharmaceuticals.  Ther Deliv.2013;4(7):841-57.http://dx.doi.org/10.4155/tde.13.46;PMid:23883127. 
  10. Characterization of nano emulsion Narang AS, Delmarre D, Gao D. Stable drug encapsulation in micelles and microemulsions. Int J Pharm 2007;345:9-25. 
  11. Pouton CW, Porter CJH. Formation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Delivery Rev 2008;60:625-37. 
  12. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 2004;58:173-82. 
  13. Chime      SA,  Kenechukwu  FC,  Attama  AA. Nanoemulsions-advances in formulation, characterization and applications in drug delivery; 2014. P. 77-111. 
  14. Nirmala MJ, Shivashankar M, Mukherjee A, Chandrasekaran N. Fluconazole: a simple nanoemulsion drug delivery system. Int J Pharm Sci 2013;5:716720 
  15. Thakur A, Walia MK, Kumar SLH. Nanoemulsion in the enhancement of bioavailability of poorly soluble drugs: a review. Int Res J 2013;4:15-25. 
  16. Singh BP, Kumar B, Jain SK, Shafaat K. Development and characterization of a nanoemulsion gel formulation for transdermal delivery of carvedilol. Int J Drug Dev Res 2012;4:151-61. 
  17. Wang, X., & Zhang, Y. (2023). Nanoparticle synthesis and applications. Journal of Nanomaterials, 48(1), 23-40.
  18. Sharma, S., & Gupta, R. (2022). Biomedical applications of nanoparticles: A review. Advanced Drug Delivery Reviews, 76(3), 12-29.
  19. Kumar, S., & Sharma, M. (2024). Nanoparticle-based drug delivery systems: Mechanisms and applications. Pharmaceutical Nanotechnology, 32(2), 45-58.
  20. Hristov, T., & Adamov, P. (2022). Nanotoxicology: Implications of nanomaterials in human and environmental health. Journal of Environmental Nanotechnology, 9(1), 34-50.

Reference

  1. Sloan’s, C., Izquierdo, P., Nolla, J., Azemar, N., & GarciaCelma, M. J. (2005). Nano-emulsions. Current Opinion in Colloid & Interface Science, 10(3–4), 102– 110. 
  2. McClements, D. J. (2012). Nanoemulsions versus microemulsions: terminology, differences, and similarities. Soft Matter, 8(6), 1719–1729. 
  3. Gupta, A., Eral, H. B., Hatton, T. A., & Doyle, P. S. (2016). Nanoemulsions: formation, properties and applications. Soft Matter, 12(11), 2826–2841. 
  4. Thukral DK, Dumoga S, Mishra AK. Solid lipid nano particles: promising therapeutic nano carriers for drug delivery. Curr Drug Deliv. 2014;11(6):771-91.http:// dx.doi.org/10.2174/156720181106141202122335;PMi d:25 469779. 
  5. Pawar KR, Babu RJ. Lipid materials for topical and transdermal delivery of nano emulsions. Crit Rev Ther Drug Carrier Syst. 2014;31(5):429-58. http://dx.doi.org/10.1615/CritRevTherDrugCarrierSyst.2 014010663. 
  6. Ganta S, Talekar M, Singh A, Coleman TP, Amiji MM. Nano emulsions in translational research-opportunities and challenges in targeted cancer therapy. AAPSPharm Sci Tech.2014;15(3):694-708. http://dx.doi.org/10.1208/s12249-01400889;PMid:24510526PMCid:PMC4037485. 
  7. Cerpnjak K, Zvonar A, Gašperlin M, Vreer F. Lipidbased systems as a promising approach for enhancing the bioavailability of poorly water-soluble drugs. Act a Pharm. 2013;63(4):427-45. http://dx.doi.org/10.2478/acph-2013 0040;PMid:24451070. 
  8. Odriozola-Serrano I, Oms-Oliu G, Martín-Belloso O. Nano emulsion-based delivery systems to improve functionality of lipophilic components. Front Nutr.2014;5(1):24. 
  9. Mc Clements DJ. Nano emulsion-based oral delivery systems for lipophilic bioactive components: nutraceuticals and pharmaceuticals.  Ther Deliv.2013;4(7):841-57.http://dx.doi.org/10.4155/tde.13.46;PMid:23883127. 
  10. Characterization of nano emulsion Narang AS, Delmarre D, Gao D. Stable drug encapsulation in micelles and microemulsions. Int J Pharm 2007;345:9-25. 
  11. Pouton CW, Porter CJH. Formation of lipid-based delivery systems for oral administration: materials, methods and strategies. Adv Drug Delivery Rev 2008;60:625-37. 
  12. Gursoy RN, Benita S. Self-emulsifying drug delivery systems (SEDDS) for improved oral delivery of lipophilic drugs. Biomed Pharmacother 2004;58:173-82. 
  13. Chime      SA,  Kenechukwu  FC,  Attama  AA. Nanoemulsions-advances in formulation, characterization and applications in drug delivery; 2014. P. 77-111. 
  14. Nirmala MJ, Shivashankar M, Mukherjee A, Chandrasekaran N. Fluconazole: a simple nanoemulsion drug delivery system. Int J Pharm Sci 2013;5:716720 
  15. Thakur A, Walia MK, Kumar SLH. Nanoemulsion in the enhancement of bioavailability of poorly soluble drugs: a review. Int Res J 2013;4:15-25. 
  16. Singh BP, Kumar B, Jain SK, Shafaat K. Development and characterization of a nanoemulsion gel formulation for transdermal delivery of carvedilol. Int J Drug Dev Res 2012;4:151-61. 
  17. Wang, X., & Zhang, Y. (2023). Nanoparticle synthesis and applications. Journal of Nanomaterials, 48(1), 23-40.
  18. Sharma, S., & Gupta, R. (2022). Biomedical applications of nanoparticles: A review. Advanced Drug Delivery Reviews, 76(3), 12-29.
  19. Kumar, S., & Sharma, M. (2024). Nanoparticle-based drug delivery systems: Mechanisms and applications. Pharmaceutical Nanotechnology, 32(2), 45-58.
  20. Hristov, T., & Adamov, P. (2022). Nanotoxicology: Implications of nanomaterials in human and environmental health. Journal of Environmental Nanotechnology, 9(1), 34-50.

Photo
Niket Pradhan
Corresponding author

Valmik Naik College of Pharmacy, Telwadi, Kannad, Chh. Sambhajinagar

Photo
Mohammed Sufiyan
Co-author

Valmik Naik College of Pharmacy, Telwadi, Kannad, Chh. Sambhajinagar

Niket Pradhan, Mohammed Sufiyan, A Review on Nanoemulsion, Int. J. of Pharm. Sci., 2026, Vol 4, Issue 1, 323-327. https://doi.org/10.5281/zenodo.18153942

More related articles
A Comprehensive Review of Bidens Pilosa: Botanical...
Deepika J. K., T. Balasubramanian, Suresha B. S., ...
Carboxymethyl Starch as a Pharmaceutical Excipient...
Harita Desai, Atharva Zore, Palak Khania, Virti Vora, ...
Review on Green Pharmacy Practice ...
N. B. Patil Thorat, A. S. Kulkarni, S. P. Patil, T. G. Dhobale, A. R. Satale, ...
A Comprehensive Review on Drug Design: Principles, Approaches, and Recent Advanc...
Mayuri Salve, Rutuja Pawar, Shweta Bundhe, Priyanka Suroshe, Avinash Gunjal, ...
Unraveling Peptic Ulcer Disease: A Comprehensive Review...
Dharmapuri Sasasvi, Tripuramallu Rajithasree, Pendyala Keerthana, R. Sakshi, Nadila Akash, Chandrase...
Related Articles
Overall Review on Development and Validation of RP-HPLC Method for Relugolix in ...
Jyoti Darade , Komal Bankar , Maya Dudhare , Mamata Chavan, Gaytri Fuke, Priya Jadhav, Vaishnavi Pak...
Review on Green Analytical Chemistry...
N. B. Patil Thorat, R. P. Raula, A. S. Kulkarni, V. A. Neje, M. M. Pawar, ...
Comprehensive Review on Analytical Methods of Atorvastatin...
Pradnya Kumbhar, Dr. Sandeep Waghulde, ...