Archive

  • An Overview Of Nanoparticles A Survey Of Characteristics, Advancements And Challenges
  • 1B. Pharm Scholar, Veerayatan Institute of Pharmacy, Jakhania, Gujarat, India
    2Assistant Professor, Smt. R. D. Gardi B. Pharmacy College, Rajkot, Gujarat, India-360110.

Abstract

Nanoparticles (NPs) are pervasive in our daily lives today as a result of the industry's rapid expansion in the previous ten years. Numerous nanomaterials have been created with medicinal applications in mind. One of these goals is pulmonary illness treatment. The use of colloidal drug delivery systems as drug carriers for the administration of various medications via various routes of administration has received substantial research. For a very long time, systems like polymeric nanoparticles, liposome, and solid lipid nanoparticles have been studied for the treatment of various lung ailments. It appears that nanoparticles could have dual impacts. When nanomaterials are used to develop medicines, their toxic consequences should be taken into account. In order to summarise the dual functions of nanoparticles in treating pulmonary disorders as well as the onset of lung diseases and even secondary diseases brought on by lung damage. We'll also talk about how these impacts are caused by factors like the physicochemical characteristics of nanoparticles.

Keywords

Nanoparticles

Reference

  1. Miao J., Miyauchi M., Simmons T.J., Dordick J.S., Linhardt R.J. Electrospinning of nanomaterials and applications in electronic components and devices. J. Nanosci. Nanotechnol. 2010; 10:5507–5519. 
  2. Anik U., Cubukcu M., Yavuz Y. Nanomaterial-based composite biosensor for glucose detection in alcoholic beverages. Artif. Cells Nanomed. Biotechnol. 2013; 41:8–12.
  3. Han S., Liu Y., Nie X., Xu Q., Jiao F., Li W., Zhao Y., Wu Y., Chen C. Efficient delivery of antitumor drug to the nuclei of tumor cells by amphiphilic biodegradable poly(L-aspartic acid-co-lactic acid)/DPPE co-polymer nanoparticles. Small. 2012; 8:1596–1606. 
  4. Xu L., Liu Y., Chen Z., Li W., Wang L., Wu X., Ji Y., Zhao Y., Ma L., Shao Y., et al. Surface-engineered gold nanorods: Promising DNA vaccine adjuvant for HIV-1 treatment. Nano Lett. 2012; 12:2003–2012.
  5. Morganti P. Use and potential of nanotechnology in cosmetic dermatology. Clin. Cosmet. Investig. Dermatol. 2010; 3:5–13. 
  6. Oberdorster G., Oberdorster E., Oberdorster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005; 113:823–839. 
  7. Ealia SAM, Saravanakumar MP. A review on the classification, characterisation, synthesis of nanoparticles and their application. In: IOP Conference Series: Materials Science and Engineering. IOP Publishing; 2017. p. 32019.
  8. Machado S, Pacheco JG, Nouws HPA, Albergaria JT, Delerue-Matos C. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci Total Environ. 2015; 533:76–81.
  9.  Pan K, Zhong Q. Organic nanoparticles in foods: fabrication, characterization, and utilization. Annu Rev Food Sci Technol. 2016; 7:245–66.
  10. Ng KK, Zheng G. Molecular interactions in organic nanoparticles for phototheranostic applications. Chem Rev. 2015;115(19):11012–42.
  11. Gujrati M, Malamas A, Shin T, Jin E, Sun Y, Lu Z-R. Multifunctional cationic lipid-based nanoparticles facilitate endosomal escape and reduction-triggered cytosolic siRNA release. Mol Pharm. 2014;11(8):2734–44. 
  12. Long CM, Nascarella MA, Valberg PA. Carbon black vs black carbon and other airborne materials containing elemental carbon: physical and chemical distinctions. Environ Pollut. 2013;181:271–86.
  13. Dresselhaus MS, Dresselhaus G, Eklund PC. Fullerenes. J Mater Res. 1993;8(8):2054–97.
  14. Yuan X, Zhang X, Sun L, Wei Y, Wei X. Cellular toxicity and immunological effects of carbon-based nanomaterials. Part Fibre Toxicol. 2019;16(1):1–27. 
  15. Lu K-Q, Quan Q, Zhang N, Xu Y-J. Multifarious roles of carbon quantum dots in heterogeneous photocatalysis. J Energy Chem. 2016;25(6):927–35. 
  16. Oh W-K, Yoon H, Jang J. Size control of magnetic carbon nanoparticles for drug delivery. Biomaterials. 2010;31(6):1342–8.
  17. Liu M, Zhao F, Zhu D, Duan H, Lv Y, Li L, et al. Ultramicroporous carbon nanoparticles derived from metal–organic framework nanoparticles for high-performance supercapacitors. Mater Chem Phys. 2018;211:234–41.
  18. Chandra S, Das P, Bag S, Laha D, Pramanik P. Synthesis, functionalization and bioimaging applications of highly fluorescent carbon nanoparticles. Nanoscale. 2011;3(4):1533–40. 
  19. .Mauter MS, Elimelech M. Environmental applications of carbon-based nanomaterials. Environ Sci Technol. 2008;42(16):5843–59. 
  20. Toshima N, Yonezawa T. Bimetallic nanoparticles—novel materials for chemical and physical applications. New J Chem. 1998; 22(11):1179–201.
  21. Nascimento MA, Cruz JC, Rodrigues GD, de Oliveira AF, Lopes RP. Synthesis of polymetallic nanoparticles from spent lithium-ion batteries and application in the removal of reactive blue 4 dye. J Clean Prod. 2018; 202:264–72.
  22. Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908–31.
  23. Mody VV, Siwale R, Singh A, Mody HR. Introduction to metallic nanoparticles. J Pharm Bioallied Sci. 2010;2(4):282. 
  24. Fedlheim DL, Foss CA. Metal nanoparticles: synthesis, characterization, and applications. Boca Raton: CRC Press; 2001. 
  25. .Dreaden EC, Alkilany AM, Huang X, Murphy CJ, El-Sayed MA. The golden age: gold nanoparticles for biomedicine. Chem Soc Rev. 2012;41(7):2740–79. 
  26. Buzea, C.; Pacheco, I.I.; Robbie, K. Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2007, 2, MR17–MR71.
  27. Oberdorster, G.; Oberdorster, E.; Oberdorster, J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environ. Health Perspect. 2005, 113, 823–839.
  28. Thurman, J.M.; Serkova, N.J. Non-invasive imaging to monitor lupus nephritis and neuropsychiatric systemic lupus erythematosus. F1000Research 2015, 4, 153.
  29. Janib, S.M.; Moses, A.S.; MacKay, J.A. Imaging and drug delivery using theranostic nanoparticles. Adv. Drug Deliv. Rev. 2010, 62, 1052–1063.
  30. Yhee, J.Y.; Son, S.; Kim, S.H.; Park, K.; Choi, K.; Kwon, I.C. Self-assembled glycol chitosan nanoparticles for disease-specific theranostics. J. Control Release 2014, 193, 202–213.
  31. Kumar, A.; Chen, F.; Mozhi, A.; Zhang, X.; Zhao, Y.; Xue, X.; Hao, Y.; Zhang, X.; Wang, P.C.; Liang, X.J. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale 2013, 5, 8307–8325.
  32. Pilcer, G.; Amighi, K. Formulation strategy and use of excipients in pulmonary drug delivery. Int. J. Pharm. 2010, 392, 1–19.
  33. Van Rijt, S.H.; Bein, T.; Meiners, S. Medical nanoparticles for next generation drug delivery to the lungs. Eur. Respir. J. 2014, 44, 765–774.
  34. Carvalho, T.C.; Peters, J.I.; Williams, R.O. Influence of particle size on regional lung deposition—What evidence is there? Int. J. Pharm. 2011, 406, 1–10
  35. Kuzmov, A.; Minko, T. Nanotechnology approaches for inhalation treatment of lung diseases. J. Control Release 2015, 219, 500–518.
  36. Kumar, A.; Chen, F.; Mozhi, A.; Zhang, X.; Zhao, Y.; Xue, X.; Hao, Y.; Zhang, X.; Wang, P.C.; Liang, X.J. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale 2013, 5, 8307–8325.
  37. Van Rijt, S.H.; Bein, T.; Meiners, S. Medical nanoparticles for next generation drug delivery to the lungs. Eur. Respir. J. 2014, 44, 765–774.
  38. Muralidharan, P.; Malapit, M.; Mallory, E.; Hayes, D., Jr.; Mansour, H.M. Inhalable nanoparticulate powders for respiratory delivery. Nanomedicine 2015, 11, 1189–1199.
  39. Kumar, A.; Chen, F.; Mozhi, A.; Zhang, X.; Zhao, Y.; Xue, X.; Hao, Y.; Zhang, X.; Wang, P.C.; Liang, X.J. Innovative pharmaceutical development based on unique properties of nanoscale delivery formulation. Nanoscale 2013, 5, 8307–8325.
  40. Kuzmov, A.; Minko, T. Nanotechnology approaches for inhalation treatment of lung diseases. J. Control Release 2015, 219, 500–518.
  41. Kaminskas, L.M.; McLeod, V.M.; Ryan, G.M.; Kelly, B.D.; Haynes, J.M.; Williamson, M.; Thienthong, N.; Owen, D.J.; Porter, C.J. Pulmonary administration of a doxorubicin-conjugated dendrimer enhances drug exposure to lung metastases and improves cancer therapy. J. Control Release 2014, 183, 18–26.
  42. Ryan, G.M.; Kaminskas, L.M.; Kelly, B.D.; Owen, D.J.; McIntosh, M.P.; Porter, C.J. Pulmonary administration of PEGylated polylysine dendrimers: Absorption from the lung versus retention within the lung is highly size-dependent. Mol. Pharm. 2013, 10, 2986–2995.
  43. Paranjpe, M.; Muller-Goymann, C.C. Nanoparticle-mediated pulmonary drug
  44. Delivery: A review. Int. J. Mol. Sci. 2014, 15, 5852–5873.
  45. Kroegel C. Global Initiative for Asthma (GINA) guidelines: 15 Years of application. ExpertRev. Clin.Immunol. 2009; 5:239–249. 
  46. Dahl R. Systemic side effects of inhaled corticosteroids in patients with asthma. Respiratory Med. 2006; 100:1307–1317.
  47. Organization WHO. Global Tuberculosis Report 2019: World Health Organization, WHO2019.
  48. Dartois V, Barry CE. Clinical pharmacology and lesion penetrating properties of second- and third-line antituberculous agents used in the management of multidrug-resistant (MDR) and extensively-drug resistant (XDR) tuberculosis. Curr Clin Pharmacol. 2010; 5(2):96–114. https://doi.org/10.2174/157488410791110797
  49. Dartois V. The path of anti-tuberculosis drugs: from blood to lesions to mycobacterial cells. Nat Rev Microbiol.2014;12(3):159–67. https://doi.org/10.1038/nrmicro3200. 
  50. Jemal A., Thun M.J., Ries L.A., Howe H.L., Weir H.K., Center M.M., Ward E., Wu X.C., Eheman C., Anderson R.U.A., et al. Annual report to the nation on the status of cancer, 1975–2005, featuring trends in lung cancer, tobacco use, and tobacco control. J. Natl. Cancer Inst. 2008;100:1672–1694
  51. Kim S.C., Kim D.W., Shim Y.H., Bang J.S., Oh H.S., Wan Kim S., Seo M.H. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J. Control. Release. 2001;72:191–202.
  52. Hitzman C.J., Wattenberg L.W., Wiedmann T.S. Pharmacokinetics of 5-fluorouracil in the hamster following inhalation delivery of lipid-coated nanoparticles. J. Pharm. Sci. 2006; 95:1196–1211.
  53. Kamat C.D., Shmueli R.B., Connis N., Rudin C.M., Green J.J., Hann C.L. Poly(beta-amino ester) nanoparticle delivery of TP53 has activity against small cell lung cancer in vitro and in vivo. Mol. CancerTher. 2013;12:405–415. ]
  54. Chen Y., Zhu X., Zhang X., Liu B., Huang L. Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol. Ther. 2010;18:1650–1656.
  55. Da Silva A.L., Santos R.S., Xisto D.G., Alonso Sdel V., Morales M.M., Rocco P.R. Nanoparticle-based therapy for respiratory diseases. An. Acad. Bras. Cienc. 2013; 85:137–146.
  56. Kenyon N.J., Bratt J.M., Lee J., Luo J., Franzi L.M., Zeki A.A., Lam K.S. Self-assembling nanoparticles containing dexamethasone as a novel therapy in allergic airways inflammation. PLoS One. 2013; 8:e77730.
  57. Pandey R., Sharma A., Zahoor A., Sharma S., Khuller G.K., Prasad B. Poly (DL-lactide-co-glycolide) nanoparticle-based inhalable sustained drug delivery system for experimental tuberculosis. J. Antimicrob.Chemother. 2003; 52:981–986.
  58. Roa W.H., Azarmi S., Al-Hallak M.H., Finlay W.H., Magliocco A.M., Lobenberg R. Inhalable nanoparticles, a non-invasive approach to treat lung cancer in a mouse model. J. Control. Release. 2011; 150:49–55

Photo
Vaishvi Patel
Corresponding author

B. Pharm Scholar, Veerayatan Institute of Pharmacy, Jakhania, Gujarat, India

Photo
Megha Gandhi
Co-author

Assistant Professor, Smt. R. D. Gardi B. Pharmacy College, Rajkot, Gujarat, India-360110.

Photo
Kajal Pradhan
Co-author

Assistant Professor, Smt. R. D. Gardi B. Pharmacy College, Rajkot, Gujarat, India-360110.

Vaishvi Patel*, Megha Gandhi, Kajal Pradhan, An Overview Of Nanoparticles A Survey Of Characteristics, Advancements And Challenges, Int. J. in Pharm. Sci., 2023, Vol 1, Issue 9, 184-191. https://doi.org/10.5281/zenodo.8331480

More related articles
A Review On The Effect Of Anxiety In Rat Using Hol...
Nilesh Pawar, Prasanna Bachhav, Sanskruti Sarode, Sanjivni Bachha...
Assessing The Benefits, Risks, Psychological Issue...
Nivetha B., Manivannan R. , Arunkumar P. , Gokul V, Satheeshkumar...
Artificial Neural Network In Pharmaceutical And Co...
Rajput Anamika, Arya Divya, Panshul Chauhan, Atul Dixit, Debapras...
Handling The Asthmatic State: A Succinct Overview...
Yash srivastav , Buddhi Prakash Kasyap, Jaya Singh, Aditya Srivastav, Mohd. Imtiyaz Ahmad, ...
Formulation and Evaluation of Herbal Face ...
Wadavkar Rahul Abasaheb , Waghmare.k.p, Garje.s.y, Sayyed.g.a, ...
Related Articles
To Study Antioxidant and Anticancer activity of aqueous extract of Onion peels, ...
Sushant Mane, Sangram Falake, Somnath Mali, Dr. Ashpak Tamboli, ...
Review on Unveiling the Therapeutic Potential of Isothiocyanates from Cruciferou...
Prasanna Babu Racheeti, K.suresh Babu, P. Venkata Narayana, Kokila Adusumalli, ...
Review On Medicinal Importance Of Indian Spices ...
Ravindra M. Hanwate, Sushmita Chavan, Surendra Bihani, Arati Hanwate, ...
A Review On The Effect Of Anxiety In Rat Using Hole Board Apparatus...
Nilesh Pawar, Prasanna Bachhav, Sanskruti Sarode, Sanjivni Bachhav, Ziyaurraheman A. R., ...
More related articles
A Review On The Effect Of Anxiety In Rat Using Hole Board Apparatus...
Nilesh Pawar, Prasanna Bachhav, Sanskruti Sarode, Sanjivni Bachhav, Ziyaurraheman A. R., ...
Assessing The Benefits, Risks, Psychological Issues And Costeffective Analysis I...
Nivetha B., Manivannan R. , Arunkumar P. , Gokul V, Satheeshkumar R. , Sathya V., Sudharsanan G., ...
Artificial Neural Network In Pharmaceutical And Cosmeceutical Research ...
Rajput Anamika, Arya Divya, Panshul Chauhan, Atul Dixit, Debaprasad Ghosh, Ashu Mittal, ...
A Review On The Effect Of Anxiety In Rat Using Hole Board Apparatus...
Nilesh Pawar, Prasanna Bachhav, Sanskruti Sarode, Sanjivni Bachhav, Ziyaurraheman A. R., ...
Assessing The Benefits, Risks, Psychological Issues And Costeffective Analysis I...
Nivetha B., Manivannan R. , Arunkumar P. , Gokul V, Satheeshkumar R. , Sathya V., Sudharsanan G., ...
Artificial Neural Network In Pharmaceutical And Cosmeceutical Research ...
Rajput Anamika, Arya Divya, Panshul Chauhan, Atul Dixit, Debaprasad Ghosh, Ashu Mittal, ...